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STUDY OF BI-F-HARMONIC CURVES ALONG RIEMANNIAN MAP

BUDDHADEV PAL ID ∗, MAHENDRA KUMAR ID , AND SANTOSH KUMAR ID

Abstract. In this paper, we study bi-f-harmonic curves and helices along the Riemannian

map. We find that, if a totally umbilical Riemannian map takes a horizontal bi-f-harmonic

curve to bi-f-harmonic curve, then the map is totally geodesic. Then, we discuss the mean

curvature vector field for horizontal bi-harmonic curves through Riemannian maps. In ad-

dition, we obtain the condition for the curvature of helix along isotropic Riemannian map.
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1. Introduction

In 1964, J. Eells and J. H. Sampson [5], introduced the concept of bi-harmonic maps by

generalizing the harmonic maps. Harmonic maps are the generalization of geodesics, minimal

surfaces and harmonic functions. Harmonic maps have important applications in different

fields of mathematics and physics with nonlinear partial differential equations. A harmonic

map α : (M, gM ) → (N, gN ) between the Riemannian manifolds (M, gM ) and (N, gN ) is a

critical point of the energy functional,

E(α) =
1

2

∫
ΓM

|dα|2vgM ,
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where ΓM is some compact domain of M and τ(α) = TracegM∇dα is tension field of

α. The harmonic map equation is an Euler-Lagrange equation of the functional τ(φ) ≡

TracegM∇dφ = 0, where τ(φ) = TracegM∇dφ is a tension field of φ [5]. A bi-harmonic

map α between the Riemannian manifolds (M, gM ) and (N, gN ) is a critical point of the

bi-energy functional, E2(α) =
1
2

∫
ΓM

|τ(α)|2vgM , where ΓM is a compact domain of M . The

bi-harmonic map equation is an Euler-Lagrange equation of the functional,

τ2(α) ≡ TracegM (∇α∇α −∇α
∇M )τ(α)− TracegMRN (dα, τ(α))dα = 0,

where RN = [∇N
X ,∇N

Y ]Z − ∇N
[X,Y ]Z, is a Riemann curvature tensor (N, gN ) [10]. In 1991

[4], the author introduced the bi-harmonic submanifolds of Euclidean space and stated a

conjecture “ any bi-harmonic submanifold of Euclidean space is harmonic, thus minimal”.

If the definition of bi-harmonic maps for Riemannian immersion in Euclidean space is used,

then the Chen’s definition of a bi-harmonic submanifold coincides with the definition given

by the bi-energy functional.

Bi-f-harmonic maps are the generalization of harmonic maps, f-harmonic maps and bi-

harmonic maps. There are two methods to formalize the link between bi-harmonic maps

and f-harmonic maps. For the first type of formalization, the authors extended the bi-energy

functional in [20, 26] to the bi-f-energy functional and obtained bi-f-harmonic maps. For the

second formalization, the f-energy functional is extended to the f-bi-energy functional. In

[13], the author introduced the f-bi-harmonic maps by generalizing the bi-harmonic maps. A

smooth map between Riemannian manifolds is an f-bi-harmonic map if it is a critical point

of the f-bi-energy function defined by the integral of f-times the square norm of the tension

field, where f is a smooth function on the domain.

In 1992 [7], the author introduced the Riemannian maps between Riemannian manifolds.

Isometric immersions and Riemannian submersions are particular cases of Riemannian maps.

The theory of isometric immersions is one of the active research areas in differential geometry

[1, 2, 3]. In [6], authors studied the characterization of submanifold by taking the hyperelastic

curves along an immersion. The basic properties of Riemannian submersions were studied

in [8, 15]. Let ϑ : (M, gM ) → (N, gN ) be a smooth map between Riemannian manifolds

such that 0 < rankϑ < min{m,n}, where dimM = m and dimN = n. Then kernel

space (Kerϑ∗) of differential map ϑ∗ and gM -orthogonal component ((Kerϑ∗)
⊥) at a point

p ∈ M , are known as horizontal and vertical spaces, respectively. Thus, the tangent space

TpM of M at point p can be decomposed as TpM = Kerϑ∗p ⊕ (Kerϑ∗p)
⊥ . The range of
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ϑ∗ and g2−orthogonal component at F (p) on N , are denoted by rangeϑ∗ and (rangeϑ∗)
⊥,

respectively. Hence, the tangent space at F (p) on N , follows the decomposition

TF (p)N = Rangeϑ∗p ⊕ (Rangeϑ∗p)
⊥.

A Riemannian map at a point p ∈ M is a horizontal restriction

ϑh
∗p :

(
(Kerϑ∗p)

⊥, gM (p)|(Kerϑ∗p)⊥

)
→ (rangeϑ∗p) ,

of smooth map ϑ : (M, gM ) → (N, gN ), such that gM (ϑ∗S, ϑ∗K) = gN (S,K), where S and K

are smooth sections of Γ(Kerϑ∗p)
⊥ [7]. In [11, 12, 14, 18, 19, 22, 25], authors studied various

types of curves such as circles, hyperelastic curves and proper curves with various maps such

as immersion, embedding, Riemannian map and Clairaut Riemannian map.

We organize our paper as follows: Section 2 of this paper contains basic concepts about

bi-f-harmonic curves and Riemannian maps. In section 3, we study the bi-f-harmonic curves

and bi-harmonic curves through the Riemannian maps. We show that, if a totally umbilical

Riemannian map takes a horizontal bi-f-harmonic curve to bi-f-harmonic curves, then the

map is totally geodesic. In the same section, conditions for the mean curvature vector field

are obtained by taking horizontal bi-harmonic curves through Riemannian maps. In the final

section, we study helix along the Riemannian maps.

2. Preliminaries

A bi-f-harmonic map α : (M, gM ) → (N, gN ) between Riemannian manifolds (M, gM ) and

(N, gN ) is a critical point of bi-f-energy functional, E2,f (α) =
1
2

∫
ΓM

|τf (α)|2vgM , where ΓM

is a compact domain of M and an Euler-Lagrange equation of the functional is defined by

τ2f (α) ≡ fJα(τf (α))−∇α
gradατf (α) = 0,

where τf (α) is the f−tension field of α and Jα is the Jacobi operator of the map defined by

Jα(X) = −(TracegM∇α∇αX − ∇α
∇MX − RN (dα,X)dα) [17, 20]. A curve α : I → M on

(M, gM ) is a bi-f-harmonic curve if and only if α satisfies the condition

(ff ′′′ + f ′f ′′)X1 + (3ff ′′ + 2f ′2)∇X1X1 + 4ff ′∇2
X1

X1

+f2∇3
X1

X1 + f2R(∇X1X1, X1)X1 = 0, (2.1)

where f : I → (0,∞) is a smooth function, ∇ is a Levi-Civita connection and R is a

Riemannian curvature tensor on M .
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Let ϑ : (M, gM ) → (N, gN ) be a Riemannian map between Riemannian manifolds (M, gM )

and (N, gN ). Then a curve α on M is a horizontal curve if α̇(t) ∈ (kerϑ∗)
⊥ for every

t ∈ I. If ∇N is the Levi-Civita connection on (N, gN ) and p2 = ϑ(p1) ∈ N , then the second

fundamental form of ϑ is given by

(∇ϑ∗)(X,Y ) =
N

∇ϑ
Xϑ∗(Y )− ϑ∗(∇M

X Y ), ∀X,Y ∈ Γ(TM), (2.2)

where
N

∇ϑ is the pullback connection of ∇N [16]. The second fundamental form of a Riemann-

ian map is symmetric and has no components in rangeϑ∗, that is (∇ϑ∗)(X,Y ) ∈ (rangeϑ∗)
⊥,

∀ X,Y ∈ Γ((kerϑ∗)
⊥) [23]. The scalar product of the second fundamental form is

gN ((∇ϑ∗)(X,Y ), ϑ∗(Z)) = 0, (2.3)

for all X,Y, Z ∈ Γ((kerϑ∗)
⊥). Now, if X,Y ∈ Γ((kerV∗)

⊥) and V ∈ Γ((rangeϑ∗)
⊥), then

∇N
ϑ∗(X)V = −SV ϑ∗(X) +∇F⊥

X V, (2.4)

where SV ϑ∗(X) is the tangential component of ∇N
ϑ∗(X)V . Since (∇ϑ∗) is symmetric and SV

is a symmetric linear transformation of rangeϑ∗, therefore

gN (SV ϑ∗(X), ϑ∗(Y )) = gN (V, (∇ϑ∗)(X,Y )). (2.5)

From equations (2.2) and (2.4), we get

RN (ϑ∗(X), ϑ∗(Y ))ϑ∗(Z) = −S(∇ϑ∗)(Y,Z)ϑ∗X + S(∇ϑ∗)(X,Z)ϑ∗Y

+ ϑ∗(R
M (X,Y )Z) + (∇̃X(∇ϑ∗))(Y,Z)− (∇̃Y (∇ϑ∗))(X,Z), (2.6)

where ∇̃ is the covariant derivative of the second fundamental form. The covariant derivative

of ∇ϑ∗ and S are, respectively

(∇̃X(∇ϑ∗))(Y, Z) = ∇ϑ⊥
X (∇ϑ∗)(Y,Z)− (∇ϑ∗)(∇M

X Y,Z)− (∇ϑ∗)(Y,∇M
X Z), (2.7)

and

(∇̃XS)V ϑ∗(Y ) = ϑ∗(∇M
X

∗ϑ∗(SV ϑ∗(Y )))− S∇ϑ⊥
X V

ϑ∗(Y )− SV Q
N

∇ϑ
Xϑ∗(Y ), (2.8)

where Q is a projection morphism on rangeϑ∗ and ∗ϑ∗ is an adjoint map of ϑ∗. From (2.7)

and (2.8), we obtain

gN ((∇̃X(∇ϑ∗))(Y, Z), V ) = gN ((∇̃XS)V ϑ∗(Y ), ϑ∗(Z)). (2.9)
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Let ϑ : (M, gM ) → (N, gN ) be a Riemannian map between Riemannian manifolds (M, gM )

and (N, gN ). Then ϑ is an umbilical Riemannian map if and only if

(∇ϑ∗)(X,Y ) = gM (X,Y )H2, (2.10)

where X,Y ∈ Γ((kerϑ∗)
⊥) and H2 is non zero vector field on (rangeϑ∗)

⊥ [21]. The Rie-

mannian map ϑ : (M, gM ) → (N, gN ) is h-isotropic at p ∈ M if

µ(X) =
||(∇ϑ∗)(X,X)||

||ϑ∗X||2
. (2.11)

If the map is h-isotropic at every point, then the map is called h-isotropic. The map ϑ is

h-isotropic at p ∈ M if and only if ∇ϑ∗ satisfies the condition

gN ((∇ϑ∗)(X,X), (∇ϑ∗)(X,Y )) = 0, (2.12)

for all orthogonal pair X,Y ∈ Γ((kerϑ∗)
⊥).

3. Characterization of bi-f-harmonic curves

Let α : I → M be a curve in an m-dimensional Riemannian manifold M with an orthonor-

mal frame {W0,W1, ....Wm1−1} in ΓTM1, where W0 = T , W1 = N and W2 = U are the unit

tangent vector, the unit normal vector and the unit binormal vector of α, respectively. Then

the Frenet equations are given by

∇TWj = −κjWj−1 + κj+1Wj+1, 0 ≤ j ≤ m− 1, (3.13)

where κ0 = κm = 0, κ1 = κ = ||∇TT || is curvature and τ = κ2 = −⟨∇TW1,W2⟩ is torsion of

α on M , respectively.

Next, we introduce the concept horizontal bi-f-harmonic curve

Definition 3.1. Let ϑ : (M, gM ) → (N, gN ) be a Riemannian map between Riemannian

manifolds (M, gM ) and (N, gN ). Then a horizontal curve on M with (2.1) is said to be a

horizontal bi-f-harmonic curve on M .

Lemma 3.1. : Let ϑ : (M, gM ) → (N, gN ) be a Riemannian map between Riemannian

manifolds (M, gM ) and (N, gN ). If ᾱ = ϑ ◦α is a curve on N , where α is a horizontal curve
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on M , then

(i) ∇̄3
ϑ∗(X1)

ϑ∗(X1) = −(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) + ϑ∗(∇3

X1
X1)

−ϑ∗(∇X1
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1)))− S∇ϑ⊥

X1
(∇ϑ∗)(X1,X1)

ϑ∗(X1)

−S(∇ϑ∗)(X1,∇X1
X1)ϑ∗(X1) +∇ϑ⊥

X1
(∇ϑ∗)(X1,∇X1X1)

+ (∇ϑ⊥
X1

)2(∇ϑ∗)(X1, X1) + (∇ϑ∗)(X1,∇2
X1

X1), (3.14)

(ii) R̄(ϑ∗(∇X1X1), ϑ∗(X1))ϑ∗(X1) = −S(∇ϑ∗)(X1,X1)ϑ∗(∇X1X1)

+S(∇ϑ∗)(∇X1
X1,X1)ϑ∗(X1) + ϑ∗(R(∇X1X1, X1)X1)

+(∇̃∇X1
X1(∇ϑ∗))(X1, X1)− (∇̃X1(∇ϑ∗))(∇X1X1, X1), (3.15)

where ∇ and ∇̄ are the Levi-Civita connections of M and N .

Proof. Let α be a horizontal curve with curvature κ on Riemannian manifoldM and ᾱ = ϑ◦α

is a curve with curvature κ̄ on N . Then a vector field ϑ∗(X1) along ᾱ is defined by

ϑ∗(X1) = ϑ∗αX1, (3.16)

for all vector field X1(s) = X1 along α(s) = α.

(i) From (2.2) and (2.4), we have

∇̄2
ϑ∗(X1)

ϑ∗(X1) = ∇̄ϑ∗(X1)((∇ϑ∗)(X1, X1) + ϑ∗(∇X1X1)) (3.17)

= −S(∇ϑ∗)(X1,X1)ϑ∗(X1) +∇ϑ⊥
X1

(∇ϑ∗)(X1, X1)

+(∇ϑ∗)(X1,∇X1X1) + ϑ∗(∇2
X1

X1). (3.18)

Taking covariant derivative of (3.18) and using (2.2) and (2.4), we get the required condition.

(ii) From (2.6) and (2.2), we get the required equation. □

Lemma 3.2. Let ϑ : (M, gM ) → (N, gN ) be a Riemannian map between Riemannian man-

ifolds (M, gM ) and (N, gN ). If ᾱ = ϑ ◦ α is a bi-f-harmonic curve on N , where α is a

horizontal curve on M , then (∇ϑ∗)(X1, U1) = 0 and

ff ′′′ + f ′f ′′ − 3κκ′f2 − 4ff ′κ2 = 4ff ′||(∇ϑ∗)(X1, X1)||2 +
3

2
f2∇ϑ⊥

X1
||(∇ϑ∗)(X1, X1)||2.
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Proof. Let ϑ : (M, gM ) → (N, gN ) be a Riemannian map such that α is a horizontal curve

on M and ᾱ is a bi-f-harmonic curve on N , then we have

(ff ′′′ + f ′f ′′)ϑ∗(X1) + (3ff ′′ + 2f ′2)∇̄ϑ∗(X1)ϑ∗(X1) + 4ff ′∇̄2
ϑ∗(X1)

ϑ∗(X1)

+f2∇̄3
ϑ∗(X1)

ϑ∗(X1) + f2R̄(ϑ∗(∇X1X1), ϑ∗(X1))ϑ∗(X1) = 0. (3.19)

From Lemma 3.1 and (3.19), we have

(ff ′′′ + f ′f ′′)ϑ∗(X1) + (3ff ′′ + 2f ′2)(∇ϑ∗)(X1, X1) + (3ff ′′ + 2f ′2)ϑ∗(∇X1X1)

+f2(∇ϑ⊥
X1

)2(∇ϑ∗)(X1, X1)− f2S(∇ϑ∗)(X1,∇X1
X1)ϑ∗(X1) + f2∇ϑ⊥

X1
(∇ϑ∗)(X1,∇X1X1)

−4ff ′S(∇ϑ∗)(X1,X1)ϑ∗(X1) + 4ff ′∇F⊥
X1

(∇ϑ∗)(X1, X1) + 4ff ′(∇ϑ∗)(X1,∇X1X1)

+4ff ′ϑ∗(∇2
X1

X1)− f2(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1)))

−f2ϑ∗(∇X1
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1)))− f2S∇ϑ⊥

X1
(∇ϑ∗)(X1,X1)

ϑ∗(X1)

+f2(∇ϑ∗)(X1,∇2
X1

X1) + f2ϑ∗(∇3
X1

X1)− f2S(∇ϑ∗)(X1,X1)ϑ∗(∇X1X1)

+f2S(∇ϑ∗)(∇X1
X1,X1)ϑ∗(X1) + f2ϑ∗(R(∇X1X1, X1)X1)

+f2(∇̄∇X1
X1(∇ϑ∗))(X1, X1)− f2(∇̄X1(∇ϑ∗))(∇X1X1, X1) = 0. (3.20)

The rangeϑ∗, component of (3.20) is

f2ϑ∗(∇3
X1

X1)− f2ϑ∗(∇X1
∗ϑ∗(S(∇ϑ∗)(X1,X1)F∗(X1)))− f2S∇ϑ⊥

X1
(∇ϑ∗)(X1,X1)

ϑ∗(X1)

+f2ϑ∗(R(∇X1X1, X1)X1) + (3ff ′′ + 2f ′2)ϑ∗(∇X1X1) + (ff ′′′ + f ′f ′′)ϑ∗(X1)

−4ff ′S(∇ϑ∗)(X1,X1)ϑ∗(X1) + 4ff ′ϑ∗(∇2
X1

X1)− f2S(∇ϑ∗)(X1,X1)ϑ∗(∇X1X1) = 0. (3.21)

From (2.8) and (2.7), we get

ϑ∗(∇X1
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) = (∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1)

+S∇ϑ⊥
X1

(∇ϑ∗)(X1,X1)
ϑ∗(X1) + S(∇ϑ∗)(X1,X1)Q∇̄F

X1
ϑ∗(X1), (3.22)

and

(∇̃X1(∇ϑ∗))(X1, X1) = ∇ϑ⊥
X1

(∇ϑ∗)(X1, X1)− 2(∇ϑ∗)(X1,∇X1X1). (3.23)



62 B. PAL, M. KUMAR, AND S. KUMAR

Substituting (3.22) and (3.23) in (3.21), we have

f2ϑ∗(∇3
X1

X1)− f2(∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1)− 2f2S∇ϑ⊥
X1

(∇ϑ∗)(X1,X1)
ϑ∗(X1)

−f2S(∇ϑ∗)(X1,X1)Q∇̄F
X1

ϑ∗(X1) + f2ϑ∗(R(∇X1X1, X1)X1) + (3ff ′′ + 2f ′2)ϑ∗(∇X1X1)

+(ff ′′′ + f ′f ′′)ϑ∗(X1)− 4ff ′S(∇ϑ∗)(X1,X1)ϑ∗(X1) + 4ff ′ϑ∗(∇2
X1

X1)

−f2S(∇ϑ∗)(X1,X1)ϑ∗(∇X1X1) = 0. (3.24)

Using (2.7) in (3.24), we obtain

f2ϑ∗(∇3
X1

X1)− f2(∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1)− 2f2S(∇̃X1
(∇ϑ∗))(X1,X1)

ϑ∗(X1)

−4f2S(∇ϑ∗)(X1,∇X1
X1)ϑ∗(X1)− f2S(∇ϑ∗)(X1,X1)Q∇̄ϑ

X1
ϑ∗(X1) + f2ϑ∗(R(∇X1X1, X1)X1)

+(3ff ′′ + 2f ′2)ϑ∗(∇X1X1) + (ff ′′′ + f ′f ′′)ϑ∗(X1)− 4ff ′S(∇ϑ∗)(X1,X1)ϑ∗(X1)

+4ff ′ϑ∗(∇2
X1

X1)− f2S(∇ϑ∗)(X1,X1)ϑ∗(∇X1X1) = 0. (3.25)

Using Serret-Frenet equations of α in (3.25), we have

(ff ′′′ + f ′f ′′ − 3κκ′f2 − 4ff ′κ2)ϑ∗(X1) + (κ′′f2 − κ3f2 − κτ2f2 + 3ff ′′κ

+2f ′2κ+ 4ff ′κ′)ϑ∗(W1) + f2ϑ∗(R(κW1, X1)X1)− 4ff ′S(∇ϑ∗)(X1,X1)ϑ∗(X1)

−f2S(∇ϑ∗)(X1,X1)ϑ∗(κW1) + (2κ′τf2 + κτ ′f2 + 4ff ′κτ)ϑ∗(U1) + κτf2κ3ϑ∗(W3)

−f2(∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1)− 2f2S(∇̃X1
(∇ϑ∗))(X1,X1)

ϑ∗(X1)

−4f2S(∇ϑ∗)(X1,κW1)ϑ∗(X1)− f2S(∇ϑ∗)(X1,X1)Q∇̄ϑ
X1

ϑ∗(X1) = 0. (3.26)

Taking inner product of (3.26) with ϑ∗(X1), we get

ff ′′′ + f ′f ′′ − 3κκ′f2 − 4ff ′κ2 − 6κf2gN ((∇ϑ∗)(X1,W1), (∇ϑ∗)(X1, X1))

−4ff ′gN ((∇ϑ∗)(X1, X1), (∇ϑ∗)(X1, X1)) = 2f2gN (S∇ϑ⊥
X1

(∇ϑ∗)(X1,X1)
ϑ∗(X1), ϑ∗(X1))

−4f2κgN (S(∇ϑ∗)(X1,W1)ϑ∗(X1), ϑ∗(X1)) + f2gN ((∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1), ϑ∗(X1)). (3.27)

From equations (2.5), (2.7) and (2.9), we have

ff ′′′ + f ′f ′′ − 3κκ′f2 − 4ff ′κ2 = 4ff ′gN ((∇ϑ∗)(X1, X1), (∇ϑ∗)(X1, X1))

+3f2gN (∇F⊥
X1

(∇ϑ∗)(X1, X1), (∇ϑ∗)(X1, X1))

= 4ff ′||(∇ϑ∗)(X1, X1)||2 + 3
2f

2∇ϑ⊥
X1

||(∇ϑ∗)(X1, X1)||2. (3.28)
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The (rangeϑ∗)
⊥, component of (3.20) is

(3ff ′′ + 2f ′2)(∇ϑ∗)(X1, X1) + 4ff ′∇ϑ⊥
X1

(∇ϑ∗)(X1, X1) + 4ff ′(∇ϑ∗)(X1,∇X1X1)

+f2∇ϑ⊥
X1

(∇ϑ∗)(X1,∇X1X1) + f2(∇ϑ∗)(X1,∇2
X1

X1) + f2(∇̃∇X1
X1(∇ϑ∗))(X1, X1)

−f2(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) + f2(∇ϑ⊥

X1
)2(∇ϑ∗)(X∗, X∗)

−f2(∇̃X1(∇ϑ∗))(∇X1X1, X1) = 0. (3.29)

Also from (2.7), we get

(∇ϑ⊥
X1

)2(∇ϑ∗)(X1, X1) = (∇̃2
X1

(∇ϑ∗))(X1, X1) + 4∇ϑ⊥
X1

(∇ϑ∗)(X1,∇X1X1)

−2(∇ϑ∗)(∇X1X1,∇X1X1)− 2(∇ϑ∗)(X1,∇2
X1

X1)). (3.30)

Substituting (3.30) in (3.29) and using (2.7), we obtain

(3ff ′′ + 2f ′2)(∇ϑ∗)(X1, X1) + 4ff ′(∇̃X1(∇ϑ∗))(X1, X1) + 12ff ′(∇ϑ∗)(X1,∇X1X1)

+4f2(∇̃X1(∇ϑ∗))(X1,∇X1X1) + 3f2(∇ϑ∗)(∇X1X1,∇X1X1) + 4f2(∇ϑ∗)(X1,∇2
X1

X1)

−f2(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) + f2(∇̃2

X1
(∇ϑ∗))(X1, X1)

+f2(∇̃∇X1
X1(∇ϑ∗))(X1, X1) = 0. (3.31)

Using Frenet equations in (3.31), we get

(12κff ′ + 4κ′f2)(∇ϑ∗)(X1,W1) + 4κτf2(∇ϑ∗)(X1, U1) + 4κf2(∇̃X1(∇ϑ∗))(X1,W1)

+3κ2f2(∇ϑ∗)(W1,W1) + κf2(∇̃W1(∇ϑ∗))(X1, X1) + 4ff ′(∇̃X1(∇ϑ∗))(X1, X1)

= f2(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1)))− f2(∇̃2

X1(∇ϑ∗))(X1, X1)

+(4κ2f2 − 3ff ′′ − 2f ′2)(∇ϑ∗)(X1, X1). (3.32)

Replacing U1 with −U1 in equation (3.32), we have

(12κff ′ + 4κ′f2)(∇ϑ∗)(X1,W1)− 4κτf2(∇ϑ∗)(X1, U1) + 4κf2(∇̃X1(∇ϑ∗))(X1,W1)

+3κ2f2(∇ϑ∗)(W1,W1) + κf2(∇̃W1(∇ϑ∗))(X1, X1) + 4ff ′(∇̃X1(∇ϑ∗))(X1, X1)

= f2(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1)))− f2(∇̃2

X1
(∇ϑ∗))(X1, X1)

+(4κ2f2 − 3ff ′′ − 2f ′2)(∇ϑ∗)(X1, X1). (3.33)

Subtracting equation (3.33) from equation (3.32), we have

(∇ϑ∗)(X1, U1) = 0. (3.34)
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□

Theorem 3.1. Let ϑ : (M, gM ) → (N, gN ) be a totally geodesic Riemannian map between

Riemannian manifolds (M, gM ) and (N, gN ). If ᾱ = ϑ ◦ α is a bi-f-harmonic curve on N

and α is a horizontal curve with curvature κ on M , then

ff ′′′ + f ′f ′′ − 3κκ′f2 − 4ff ′κ2 = 0. (3.35)

Proof. Using the fact that ϑ is a totally geodesic Riemannian map in equation (3.28), we get

the required condition. □

Corollary 3.1. Let ϑ : (M, gM ) → (N, gN ) be an isotropic Riemannian map between Rie-

mannian manifolds (M, gM ) and (N, gN ). If ᾱ = ϑ ◦α is a bi-f-harmonic curve on N , where

α is horizontal curve with curvature κ and constant f on M , then α is a curve of constant

curvature on M .

Proof. Since ϑ is an isotropic Riemannian map, therefore from (3.28), we have

ff ′′′ + f ′f ′′ − 3κκ′f2 − 4ff ′κ2 = 4ff ′||(∇ϑ∗)(X1, X1)||2 (3.36)

Also, f is a constant, therefore from (3.36), we get κ = C(constant). □

Theorem 3.2. Let ϑ : (M, gM ) → (N, gN ) be a Riemannian map between Riemannian man-

ifolds (M, gM ) and (N, gN ). If ϑ is a totally umbilical Riemannian map taking a horizontal

bi-f-harmonic curve α on M to a bi-f-harmonic curve ᾱ = ϑ ◦ α on N , then ϑ is a totally

geodesic Riemannian map.

Conversely, a totally geodesic Riemannian map takes a horizontal bi-f-harmonic curve α on

M to a bi-f-harmonic curve ᾱ = ϑ ◦ α on N .

Proof. Let ϑ : (M, gM ) → (N, gN ) be a totally umbilical Riemannian map taking a horizontal

bi-f-harmonic curve α on M to a bi-f-harmonic curve ᾱ = ϑ ◦ α on N , then from (3.31), we

have

f2(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) = (3ff ′′ + 2f ′2)H2 + 4ff ′∇ϑ⊥

X1
H2

f2(∇ϑ⊥
X1

)2H2 − κ2f2H2 + f2(∇̃∇X1
X1(∇ϑ∗))(X1, X1). (3.37)

Substituting (3.37) in (3.20), we have

f2ϑ∗(∇X1
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) = −4ff ′S(∇ϑ∗)(X1,X1)ϑ∗(X1)

−f2S∇ϑ⊥
X1

H2
ϑ∗(X1)− κf2||H2||2ϑ∗(W1). (3.38)
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Since S(∇ϑ∗)(X1,X1)ϑ∗(∇X1X1) = κ||H2||2ϑ∗(W1), therefore from (3.22) and (3.38), we have

f2(∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1) + 2f2S∇ϑ⊥
X1

(∇ϑ∗)(X1,X1)
ϑ∗(X1) + f2S(∇ϑ∗)(X1,X1)Q∇̄ϑ

X1
ϑ∗(X1)

+4ff ′S(∇ϑ∗)(X1,X1)ϑ∗(X1) + κf2||H2||2ϑ∗(W1) = 0, (3.39)

where

(∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1) =
1

2
∇ϑ⊥

X1
||H2||2ϑ∗(X1),

S∇ϑ⊥
X1

H2
ϑ∗(X1) =

1

2
∇ϑ⊥

X1
||H2||2ϑ∗(X1),

and

S(∇ϑ∗)(X1,X1)ϑ∗(X1) = ||H2||2ϑ∗(X1).

Thus from (3.39), we have

3

2
f2(∇ϑ⊥

X1
||H2||2)ϑ∗(X1) + 2f2||H2||2ϑ∗(∇X1X1) + 4ff ′||H2||2ϑ∗(X1) = 0. (3.40)

Taking the inner product of (3.40) with ϑ∗(∇X1X1), we have

||H2|| = 0 =⇒ H2 = 0. (3.41)

Hence ϑ is a totally geodesic Riemannian map.

Conversely, suppose that ϑ is a totally geodesic Riemannian map, then we have

(ff ′′′ + f ′f ′′)ϑ∗(X1) + (3ff ′′ + 2f ′2)∇̄ϑ∗(X1)ϑ∗(X1) + 4ff ′∇̄2
ϑ∗(X1)

ϑ∗(X1)

+f2∇̄3
ϑ∗(X1)

ϑ∗(X1) + f2R̄(ϑ∗(∇X1X1), ϑ∗(X1))ϑ∗(X1) = (ff ′′′ + f ′f ′′)ϑ∗(X1)

+(3ff ′′ + 2f ′2)∇ϑ∗(X1)ϑ∗(X1) + 4ff ′∇2
ϑ∗(X1)

ϑ∗(X1) + f2∇3
ϑ∗(X1)

ϑ∗(X1)

+f2R(ϑ∗(∇X1X1), ϑ∗(X1))ϑ∗(X1). (3.42)

Since α is a horizontal bi-f-harmonic curve on M , therefore

(ff ′′′ + f ′f ′′)ϑ∗(X1) + (3ff ′′ + 2f ′2)∇̄ϑ∗(X1)ϑ∗(X1) + 4ff ′∇̄2
ϑ∗(X1)

ϑ∗(X1)

+f2∇̄3
ϑ∗(X1)

ϑ∗(X1) + f2R̄(ϑ∗(∇X1X1), ϑ∗(X1))ϑ∗(X1) = 0. (3.43)

Hence ᾱ = ϑ ◦ α is a bi-f-harmonic curve on N . □
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3.1. Characterization of bi-harmonic curves. A bi-harmonic curve (bi-1-harmonic curve)

is a special case of bi-f-harmonic curve for f = 1. Let ϑ : (M, gM ) → (N, gN ) be a Riemann-

ian map between Riemannian manifolds (M, gM ) and (N, gN ) such that ᾱ is a bi-harmonic

curve on N , then

∇̄3
ϑ∗(X1)

ϑ∗(X1) + R̄(ϑ∗(∇X1X1), ϑ∗(X1))ϑ∗(X1) = 0.

Taking f = 1 in (3.26) and (3.32), we have

−3κκ′ϑ∗(X1) +
(
κ′′ − κ3 − κτ2

)
ϑ∗(W1) + ϑ∗(R(κW1, X1)X1)

−S(∇ϑ∗)(X1,X1)ϑ∗(κW1) + (2κ′τ + κτ ′)ϑ∗(U1) + κτκ3ϑ∗(W3)

−(∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1)− 2S(∇̃X1
(∇ϑ∗))(X1,X1)

ϑ∗(X1)

−4S(∇ϑ∗)(X1,κW1)ϑ∗(X1)− S(∇ϑ∗)(X1,X1)Q∇̄ϑ
X1

ϑ∗(X1) = 0, (3.44)

and

4κ′(∇ϑ∗)(X1,W1) + 4κτ(∇ϑ∗)(X1, U1) + 4κ(∇̃X1(∇ϑ∗))(X1,W1)

+3κ2(∇ϑ∗)(W1,W1) + κ(∇̃W1(∇ϑ∗))(X1, X1) = 4κ2(∇ϑ∗)(X1, X1)

−(∇̃2
X1

(∇ϑ∗))(X1, X1) + (∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))), (3.45)

respectively.

Theorem 3.3. Let ϑ : (M, gM ) → (N, gN ) be a totally umbilical Riemannian map between

Riemannian manifolds (M, gM ) and (N, gN ). If ᾱ = ϑ ◦ α is a bi-harmonic curve on N and

α is a horizontal bi-harmonic curve on M , then the mean curvature vector field satisfies the

relations

(∇ϑ⊥
X1

)2H2 = ||H2||2H2 + κ2H2, (3.46)

and

2κ||H2||2 = κ′′ − κ3 − κτ2 + κgM (R(W1, X1)X1,W1). (3.47)

Conversely, let ϑ : (M, gM ) → (N, gN ) be a totally umbilical Riemannian map and mean

curvature vector field satisfies the following conditions

(∇ϑ⊥
X1

)2H2 = ||H2||2H2 + κ2H2,∇F⊥
W1

H = 2||H2||2ϑ∗W1, (3.48)

and ||H2||2 = constant. Then ϑ maps a horizontal bi-harmonic curve α on M to a bi-

harmonic curve ᾱ = ϑ ◦ α on N .
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Proof. Let ϑ : (M, gM ) → (N, gN ) be a totally umbilical bi-harmonic Riemannian map

between M and N , then from (3.45), we have

4κ(∇̃X1(∇ϑ∗))(X1,W1)− κ2H2 + κ(∇̃W1(∇ϑ∗))(X1, X1)

= −(∇̃2
X1

(∇ϑ∗))(X1, X1) + (∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))). (3.49)

Replacing W1 with −W1 in equation (3.49), we get

−4κ(∇̃X1(∇ϑ∗))(X1,W1)− κ2H2 − κ(∇̃W1(∇ϑ∗))(X1, X1)

= −(∇̃2
X1

(∇ϑ∗))(X1, X1) + (∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))). (3.50)

Subtracting (3.49) from (3.50), we obtain

4κ(∇̃X1(∇ϑ∗))(X1,W1) + κ(∇̃W1(∇ϑ∗))(X1, X1) = 0. (3.51)

From equations (3.49) and (3.51), we get

(∇̃2
X1

(∇ϑ∗))(X1, X1)− (∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1)))− κ2H2 = 0. (3.52)

From (2.5) and (2.10), we have

(∇̃2
X1

(∇ϑ∗))(X1, X1) = (∇ϑ⊥
X1

)2H2, (3.53)

and

(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) = ||H2||2H2. (3.54)

Equations (3.52), (3.53) and (3.54), gives the first condition.

Now, taking the inner product of (3.44) with ϑ∗(W1), we have

gN ((∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1), ϑ∗(W1)) + gN (4S(∇ϑ∗)(X1,κW1)ϑ∗(X1), ϑ∗(W1))

−gN (ϑ∗(R(κW1, X1)X1), ϑ∗(W1)) + gN (S(∇ϑ∗)(X1,X1)ϑ∗(κW1), ϑ∗(W1))

−κ′′ + κ3 + κτ2 + gN (2S(∇̃X1
(∇ϑ∗))(X1,X1)

ϑ∗(X1), ϑ∗(W1))

+gN (S(∇ϑ∗)(X1,X1)Q∇̄ϑ
X1

ϑ∗(X1), ϑ∗(W1)) = 0. (3.55)

Since ϑ is a totally umbilical Riemannian map, therefore
gN ((∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1), ϑ∗(W1)) = 0,

gN (S(∇ϑ∗)(X1,X1)ϑ∗(κW1), ϑ∗(W1)) = κ||H2||2,

gN (S(∇ϑ∗)(X1,X1)Q∇̄ϑ
X1

ϑ∗(X1), ϑ∗(W1)) = κ||H2||2.

(3.56)
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From equation (3.55) and (3.56), we get the required condition.

Conversely, suppose that ϑ is a totally umbilical Riemannian map, then for a curve ᾱ = ϑ◦α

on N , where α is a curve on M , we have

∇̄3
ϑ∗(X1)

ϑ∗(X1) + R̄(ϑ∗(∇X1X1), ϑ∗(X1))ϑ∗(X1) = −||H2||2H2

−ϑ ∗ (∇X1
∗ϑ∗(||H2||2ϑ∗(X1)))− 1

2(∇
ϑ⊥
X1

||H2||2)ϑ∗(X1)

+(∇ϑ⊥
X1

)2H2 − κ2H2 − κ||H2||2ϑ∗(W1) + κ∇F⊥
W1

H2

+ϑ∗(∇3
X1

X1) + ϑ∗(R(∇X1X1, X1)X1). (3.57)

Taking ||H||2 = constant in equation (3.57), we have

∇̄3
ϑ∗(X1)

ϑ∗(X1) + R̄(ϑ∗(∇X1X1), ϑ∗(X1))ϑ∗(X1) = −||H2||2H2

+(∇ϑ⊥
X1

)2H2 − κ2H2 − 2κ||H2||2ϑ∗(W1) + κ∇F⊥
W1

H2

+ϑ∗(∇3
X1

X1) + ϑ∗(R(∇X1X1, X1)X1). (3.58)

Using equation (3.48) in (3.58), we get

∇̄3
ϑ∗(X1)

ϑ∗(X1) + R̄(ϑ∗(∇X1X1), ϑ∗(X1))ϑ∗(X1)

= ϑ∗(∇3
X1

X1) + ϑ∗(R(∇X1X1, X1)X1). (3.59)

Hence, from equation (3.59), we can say that the curve ᾱ = ϑ ◦α on N is bi-harmonic curve

on N iff α is a horizontal bi-harmonic curve on M . □

4. Helices along the Riemannian map

A regular curve α = α(s) parametrized by arc length s is an ordinary helix if their exist

unit vector fields W1 and U1 along α and constants κ and τ (κ, τ ≥ 0) such that
∇X1X1 = κW1,

∇X1W1 = −κX1 + τU1,

∇X1U1 = −τW1,

(4.60)

where κ is known as the curvature of the helix and τ is known as the torsion of the helix

[9]. If τ = 0, then α reduces to the circle and if both κ = 0 and τ = 0, then α reduces to the

geodesic. Hence for a proper ordinary helix κ and τ both are positive constants.
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Theorem 4.1. Let ϑ : (M, gM ) → (N, gN ) be an Riemannian map between Riemannian

manifolds (M, gM ) and (N, gN ). If ᾱ = ϑ ◦ α is a helix on N , where α is a horizontal curve

on M , then (∇ϑ∗)(X1, U1) = 0 and ∇ϑ⊥
X1

||(∇ϑ∗)(X1, X1)||2 + 2κκ′ = 0.

Proof. Let ϑ : (M, gM ) → (N, gN ) be a Riemannian map such that α is a horizontal curve

on M and ᾱ = ϑ ◦ α is a helix on N , then

∇̄3
ϑ∗(X1)

ϑ∗(X1) + λ2∇̄ϑ∗(X1)ϑ∗(X1) = 0. (4.61)

From Lemma 3.1 and (4.61), we have

−(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1)))− ϑ∗(∇X1

∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1)))

−S∇ϑ⊥
X1

(∇ϑ∗)(X1,X1)
ϑ∗(X1) + (∇ϑ⊥

X1
)2(∇ϑ∗)(X1, X1)− S(∇ϑ∗)(X1,∇X1

X1)ϑ∗(X1)

+∇ϑ⊥
X1

(∇ϑ∗)(X1,∇X1X1) + (∇ϑ∗)(X1,∇2
X1

X1) + λ2(∇ϑ∗)(X1, X1)

+ϑ∗(∇3
X1

X1) + λ2ϑ∗(∇X1X1) = 0. (4.62)

The rangeϑ∗ and (rangeϑ∗)
⊥, components of (4.62) are

−ϑ∗(∇X1
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1)))− S∇ϑ⊥

X1
(∇ϑ∗)(X1,X1)

ϑ∗(X1)

−S(∇ϑ∗)(X1,∇X1
X1)ϑ∗(X1) + ϑ∗(∇3

X1
X1) + λ2ϑ∗(∇X1X1) = 0, (4.63)

and

−(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) + (∇ϑ⊥

X1
)2(∇ϑ∗)(X1, X1)

+∇ϑ⊥
X1

(∇ϑ∗)(X1,∇X1X1) + (∇ϑ∗)(X1,∇2
X1

X1) + λ2(∇ϑ∗)(X1, X1) = 0, (4.64)

respectively. From (2.8) and (2.7), we get

ϑ∗(∇X1
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) = (∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1)

+S∇ϑ⊥
X1

(∇ϑ∗)(X1,X1)
ϑ∗(X1) + S(∇ϑ∗)(X1,X1)Q∇̄F

X1
ϑ∗(X1), (4.65)

and

(∇ϑ⊥
X1

)2(∇ϑ∗)(X1, X1) = (∇̃2
X1

(∇ϑ∗))(X1, X1) + 4∇ϑ⊥
X1

(∇ϑ∗)(X1,∇X1X1)

−2(∇ϑ∗)(∇X1X1,∇X1X1)− 2(∇ϑ∗)(X1,∇2
X1

X1). (4.66)
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Substituting (4.66) in (4.64), we get

−(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) + (∇̃2

X1
(∇ϑ∗))(X1, X1)

+5∇ϑ⊥
X1

(∇ϑ∗)(X1,∇X1X1)− 2(∇ϑ∗)(∇X1X1,∇X1X1)

−(∇ϑ∗)(X1,∇2
X1

X1) + λ2(∇ϑ∗)(X1, X1) = 0. (4.67)

Using (2.7) in (4.67), we obtain

−(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) + (∇̃2

X1
(∇ϑ∗))(X1, X1)

+5(∇̃X1(∇ϑ∗))(X1,∇X1X1) + 3(∇ϑ∗)(∇X1X1,∇X1X1)

+4(∇ϑ∗)(X1,∇2
X1

X1) + λ2(∇ϑ∗)(X1, X1) = 0. (4.68)

Using Serret-Frenet equations in (4.68), we get

−(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) + (∇̃2

X1
(∇ϑ∗))(X1, X1)

+5κ(∇̃X1(∇ϑ∗))(X1,W1) + 3κ2(∇ϑ∗)(W1,W1)

+4κ′(∇ϑ∗)(X1,W1)− 4κ2(∇ϑ∗)(X1, X1)

+4κτ(∇ϑ∗)(X1, U1) + λ2(∇ϑ∗)(X1, X1) = 0. (4.69)

From (4.69), we have

− 1
4κτ

{
− (∇ϑ∗)(X1,

∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) + (∇̃2
X1

(∇ϑ∗))(X1, X1)

+5κ(∇̃X1(∇ϑ∗))(X1,W1) + 3κ2(∇ϑ∗)(W1,W1)

+4κ′(∇ϑ∗)(X1,W1)− 4κ2(∇ϑ∗)(X1, X1)

+λ2(∇ϑ∗)(X1, X1)
}
= (∇ϑ∗)(X1, U1). (4.70)

Changing U1 into −U1 in (4.69), we get

−(∇ϑ∗)(X1,
∗ϑ∗(S(∇ϑ∗)(X1,X1)ϑ∗(X1))) + (∇̃2

X1
(∇ϑ∗))(X1, X1)

+5κ(∇̃X1(∇ϑ∗))(X1,W1) + 3κ2(∇ϑ∗)(W1,W1)

+4κ′(∇ϑ∗)(X1,W1)− 4κ2(∇ϑ∗)(X1, X1)

+4κτ(∇ϑ∗)(X1, U1) + λ2(∇ϑ∗)(X1, X1) = 0, (4.71)
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and then subtracting from (4.69), we have

(∇ϑ∗)(X1, U1) = 0. (4.72)

Now, for second condition substituting (4.65) and (4.66) in (4.63), we have

−(∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1)− 2S(
∇̃X1

(∇ϑ∗)
)
(X1,X1)

ϑ∗(X1),

−5S(∇ϑ∗)(X1,∇X1
X1)ϑ∗(X1)− S(∇ϑ∗)(X1,X1)Q∇̄ϑ

X1
ϑ∗(X1),

ϑ∗(∇3
X1

X1) + λ2ϑ∗(∇X1X1) = 0. (4.73)

Using Frenet-Serret equations in (4.73), we get

−(∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1)− 2S(
∇̃X1

(∇ϑ∗)
)
(X1,X1)

ϑ∗(X1)

−5κS(∇ϑ∗)(X1,W1)ϑ∗(X1)− S(∇ϑ∗)(X1,X1)Q∇̄ϑ
X1

ϑ∗(X1)

+(κ′′ − κ3 − κτ2)ϑ∗(W1) + κτκ3ϑ∗(W3) + λ2κϑ∗(W1)

−3κκ′ϑ∗(X1) + (2κ′τ + κτ ′)ϑ∗(U1) = 0. (4.74)

Taking the inner product of equation (4.74) with ϑ∗(X1), we have

3κκ′ + gN

(
(∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1), ϑ∗(X1)

)
+2gN

(
S(

∇̃X1
(∇ϑ∗)

)
(X1,X1)

ϑ∗(X1), ϑ∗(X1)

)
+ 5gN

(
κS(∇ϑ∗)(X1,W1)ϑ∗(X1), ϑ∗(X1)

)
+gN

(
S(∇ϑ∗)(X1,X1)Q∇̄ϑ

X1
ϑ∗(X1), ϑ∗(X1)

)
= 0. (4.75)

Using (2.5) and equation (4.66) in (4.75), we get

∇ϑ⊥
X1

gN

(
(∇ϑ∗)(X1, X1), (∇ϑ∗)(X1, X1)

)
+ 2κgN

(
(∇ϑ∗)(X1,W1), (∇ϑ∗)(X1, X1)

)
+3κκ′ + gN

(
(∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1), ϑ∗(X1)

)
= 0. (4.76)

Using (2.5) and equation (4.66) in (2.9), we obtain

gN

(
(∇̃X1S)(∇ϑ∗)(X1,X1)ϑ∗(X1), ϑ∗(X1)

)
= −2κgN

(
(∇ϑ∗)(X1,W1), (∇ϑ∗)(X1, X1)

)
−1

2∇
ϑ⊥
X1

gN

(
(∇ϑ∗)(X1, X1), (∇ϑ∗)(X1, X1)

)
. (4.77)

Equation (4.76) and (4.77) together provides the required condition. □
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Corollary 4.1. Let ϑ : (M, gM ) → (N, gN ) be a isotropic Riemannian map between Rie-

mannian manifolds (M, gM ) and (N, gN ). If ᾱ(s) = ϑ ◦ α(s) is a helix on N , where α is a

horizontal curve on M , then curvature of α is constant.

Proof. Taking ||(∇ϑ∗)(X1, X1)||2 = constant, in a Theorem 4.1, we get κ = constant. □

Theorem 4.2. [24] Let ϑ : (M, gM ) → (N, gN ) be a Riemannian map between Riemannian

manifolds (M, gM ), dimM ≥ 2 and (N, gN ). Then ϑ maps a horizontal helix α on M to a

helix ᾱ = ϑ ◦α on N iff ϑ is totally umbilical and the mean curvature vector field H satisfies

the following equation

(∇ϑ⊥
X1

)2H2 = −τ2H2.
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