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ON LACUNARY AZ-STATISTICAL CONVERGENCE OF FUZZY TRIPLE
SEQUENCES OF ORDER ~

ISIL ACIK DEMIRCI | | OMER KIsI|” ¥, AND MEHMET GURDAL

ABSTRACT. In this study, we propose the concepts of f-lacunary AZ-statistical convergence
of order v and strongly f-lacunary AZ-summability of order v for triple sequences of fuzzy
numbers. Additionally, we explore fundamental connections between these convergence no-
tions. As a practical application, we apply this newly defined convergence to establish a
fuzzy Korovkin-type approximation theorem concerning triple sequences of fuzzy positive
linear operators. To highlight the effectiveness of our result, we provide an example that
demonstrates the superiority of the established theorem over its classical counterpart.
Keywords: Fuzzy sequence, ideal, fuzzy type Korovkin-theorem, lacunary sequence, regu-
lar matrix, triple sequence, A-statistical convergence.
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1. INTRODUCTION

The concept of statistical convergence for sequences, an extension of the usual notion of
convergence, was initially introduced in [7), [39]. This concept has spurred extensive research
across various spaces and has been influential in the fields of summability theory, functional
analysis, and measure theory, among others (see [5 [6], [9], [14], [17], [20], [25], [26], [29]).
In their 2008 study [40], Sahiner et al. investigated statistical convergence within the con-
text of triple sequences. For a comprehensive understanding of optimal convergence in triple
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sequences, see [42] and other related sources. A significant advancement in convergence the-
ory, including statistical convergence, was made by Kostyrko et al. [22], who introduced the
notions of Z-convergence and Z*-convergence in metric spaces using ideals based on natural
numbers. Following Kostyrko et al.’s work, similar investigations have been conducted for
function sequences in random 2-normed spaces [37] and other areas. Further studies have ex-
plored these concepts in metric spaces [2§], 2-normed spaces [41], and for localized sequences
in metric spaces [30], with additional references provided in [11}, 12} 13} 19, [36] 45].

Recently, Aizpuru et al. [I] extended the concept of natural density by introducing the
f-density of a subset of positive integers using an unbounded modulus function. In 2015,
Bhardwaj and Dhawan [3] introduced the definitions of f-density and f-statistical conver-
gence of order . Furthermore, Sengiil and Et [44] advanced the field by proposing the concept
of lacunary statistical convergence of order v in 2018, employing the modulus function.

To address uncertainty and vagueness, Zadeh [46] introduced the concepts of fuzzy sets,
fuzzy logic, and fuzzy numbers in 1965. Since then, fuzzy logic has found applications in
various fields such as artificial intelligence, control systems, and decision-making processes. In
1986, Matloka [24] extended these ideas to sequence space theory. The concept of statistical
convergence for sequences of fuzzy numbers was later explored by Savag [34]. For additional
details on fuzzy sequence spaces, see [4], [15], [18], [38], and the associated references.

Building on the previous research, we develop and examine the properties of f-lacunary
Al_statistical convergence of order v and strongly f-lacunary AZ-summability of order ~ for
triple sequences of fuzzy numbers. We also explore the interrelationship between these newly
defined concepts. Finally, we utilize lacunary triple sequences, the modulus function, and
a regular matrix to establish a fuzzy Korovkin-type theorem for triple sequences of fuzzy

numbers. As a result, our findings become specific cases of the results presented in [32].

2. PRELIMINARIES

The sets of all natural numbers, all real numbers, and all complex numbers are represented
by the letters N, R and C, respectively, throughout the text. Let F C N and E (r) =

{i € E:i<r}. Recall that the natural or asymptotic density of E is defined by ¢ (E) =

|E(r)]

" if the limit exists.

lim, o0

1
lim —{j:j<r:lyj—yl>e} =0, foralle >0

r—oo T
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indicates that the sequence (y;) statistically converges to y [§]. Since then, the idea of ideal
of subsets of N has been used to expand the concept of statistical convergence to include the
idea of Z-convergence [22]. Let Z be a non-empty set and P(Z) be the family of all subsets
of Z. An ideal, denoted as Z (C P(Z)) is a family of subsets of Z satisfying the following
conditions: (a) E, R € Timply FUR €Z (b) R€ Z, E C Rimply E € 7, while an admissible
ideal Z of Z covers Z. If Z ¢ T, T # (), the family of sets F(Z) = {M C Z : Z\M € I}
forms a filter of Z. By Zy;, and Zs, respectively, we indicate the ideal that is composed of all
finite subsets and density zero subsets of N. A sequence a = (ag) is said to be Z-convergent
to b € R provided for every € > 0, the set A(e) = {n € N : |ay — b| > €} belongs to Z [22].
When considering Z = Zy;;,, Z-convergence of the sequence aligns with ordinary convergence,
and when considering Z = Zg, it aligns with statistical convergence. Furthermore, it is worth
noting that [35] delves into the concept of Z-statistically convergence. A sequence (ay) is
deemed Z-statistically convergent to a if {n € N:1/n|{k <n:|ar —a| > ¢e}| >} belongs
to Z for each €,6 > 0. Then, a is the Z-statistical limit of the sequence (aj) and Z-st-
limg_ o0 a = a.

The lacunary sequence 6 = (k,), r — oo, is a nonnegative integers sequence that in-
creases where kg = 0, h, = (k, —ky—1) and h, — oo (and r — o0). If the following

limit holds for every € > 0, then a sequence (yx) is lacunary statistically convergent to

y i limy oo 1/he [{k € I : [y —yl = €}| = 0, where I, = (ky_1,k,] and g, = g2 If the

following limit holds for every € > 0, then a sequence (yj) is lacunary statistically convergent
to y of order v : lim, 0 1/0) |[{k € I, : lyp — y| > €}| = 0, where (h)) = (h],h3, ..., h},...)
[43].

A modulus function g : [0,00) — [0,00) such that (i) x = 0 < g (z) = 0; (ii) the function
g is increasing; (iii) for all z,y € [0,00), g(z+y) < g(y) + g (z); (iv) the function g is
continuous from the right at point 0 [3I]. Therefore, the function g needs be continuous
throughout the the interval [0, c0).

If the following limit holds for every € > 0, a sequence (yi), is f-lacunary statistically
convergent to y of order v : lim, 00 1/f (A7) f ([{k € I, : lyp — y| > €}|) = 0, where (h)) =
(h1,hg, ... k. ..) [44].

Lemma 2.1 ([24]). limy_ oo @ = inf {@ it > 0} for any modulus function f.

We now recall the following definitions which were given in [10, [16] 23| 24] [46].
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A fuzzy number, denoted as a, is characterized as a fuzzy set of real numbers spanning
the interval from R to [0, 1] and fulfilling the following properties:

F1. there is such a ¢ in R such that a (t) =1 i.e., @ is normal,

F2. a(t) > min{a(d),a(c)} = a(d) Aa(c) where ¢ <t < d, that is a is fuzzy convex

F3. a is upper semi continuous,

F4. supp(a) = {t €e R:a(t) > 0} is compact.
Also, for o € (0,1], the a-level cut of a can be defined as [a], = {t e R:a(t) > a} =

[a,,,at], the lower and upper boundaries of the a-level cut of the fuzzy number a are demon-

Jr

o

strated by a_, and a], respectively. Fgr represents the set of all fuzzy numbers. For any
A€ R and EL,B € Fr, the scalar multiplication A ® a and the sum a @ b are defined in that :
<EL &) E) = Gy ® b, and (A®a), = Aaq. Now, d is the Hausdorff metric and d : Fr x Frp — R
is givenaby

d(d, I;) = sup max{‘d_ — bz

(6% a |
0<a<l

For every a, l~), c, de Fr, we get
d1. the space (Fg,d) is a metric space that is complete [33],
d

\)

d (pa, pi)) = lp|d (a, B) .p € C (the set of all complex scalars),
as. d(d,B) :d(a@é,z}@é),

ad. d(a@é,é@d) gd(a,z}) +d(a,ci),

ds. ‘d(a,o) —d(z},f))( < d(&,B) < d(a,0) +d(13,

[en)]

) , where 0 is the additive identity
element of Fg.
Let a = (a,) be a sequence of fuzzy real numbers and if

lim 1/r{n:n <r:d(ap,ao) > €}| =0

r—00

for every € > 0, then (a,) is statistically convergent to fuzzy number ag.

Definition 2.1. If there is a positive number M such that d(@n,0) < M for all n, k.1, then
the triple sequence a = (ank;) of fuzzy numbers is said to be bounded. 013 s the set that

represents all bounded triple sequences of fuzzy numbers.

Assume that A = (apkoipm) is a summability matrix with six-dimensions. If the series
converges in the sense of Pringsheim for every (n, 0,p) € N3, the A-transform of a given triple

sequence, T = (Tgum), is given by Ax := {(Aa:) } . Recall that a six dimensional matrix

nop
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A = (@pkoipm) is said to be Robinson-Hamilton (RH)-regular if it maps every bounded P-
convergent sequence with the same P-limit. The RH-conditions state that a six dimensional
matrix A = (ankolpm) is RH-regular iff

RH1. For each (k,l,m) € N3, P-limy, o Gnkotpm = 0,

RH2. P-limy o5 Y pcn @nkolpm = 0 for every I € Nym € N,

RH3. P-limy, op Y ey Gnkolpm = 0 for every k € N,m € N,

RH4. P-limy, op Y cn Gnkolpm = 0 for every k € N1 € N,

RH5. Z(k,l7m)€N3 |@nkotpm| is P-convergent for all (n,o,p) € N3,

RHG6. There exist finite positive integers B and C such that Ek7l’m>c Ankolpm| < B holds
for all (n,0,p) € N3,

RH7. P-lim, ) Z(k,l,m)€N3 Ankolpm = 1.

Now, assume that K’ C N® and A = (ankerpm) is non-negative RH-regular summability
matrix. When the limit on the right-hand side exists in the sense of Pringsheim, the A-
density of K’ is then given by §4 (K') := P — lim,,, Z(k,l,m)eK’ Ankolpm, Where K' :=
{(k, I,m) € N3 : |wgym — €] > 5} . A real triple sequence x = (xy,) is said to be A-statistically
convergent to a number ¢ if 554 (K') = 0 for every € > 0. (A3—stat)—limnopa: = / in this

instance.

3. MAIN RESULTS

This section introduces and investigates the concepts of strongly f-lacunary AZ-summability
of order v and f-lacunary AZ-statistical convergence of order v for triple sequences of fuzzy
numbers. Throughout this study, unless specified otherwise, we assume 0 < v < 1 and that

f is an unbounded modulus function.

Definition 3.1. Let f be an unbounded modulus function, 03 = {(ky,ls,m¢)} be a lacunary
sequence and y € (0,1]. A sequence @ = (Apm) of fuzzy numbers is f-lacunary AT -statistical
convergent of order v (v € (0,1]) (or AT stat, g, -convergent) to a fuzzy number agoo if for

every e >0, ( >0,

{ms,t) €N s £ (0 m) € Do 0 (AT ) = 1) > <}

. . f . - ~ f
belongs to Is. In this case we write (AI3 —stE(J,tﬂY,(k)—hmk’l,m%OO Aklm = Q000- (AIS —stat%(gg)

f ..
represents the set of all f-lacunary A% -statistically convergent sequences of order ~.
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Definition 3.2. A triple sequence a = (akn) of fuzzy numbers is strongly f-lacunary AT

f
summable of order ~(or A%s W, 9, -summable) if there exists a fuzzy number aooo such that

1 - -
(r,s,t) € N3 T Y f(d((Aa)y, doo)) > € p €Ty
TSt (K lm)€El o

!
for each ¢ > 0. (AI3 W%93> represents the set of all strongly f-lacunary AT _summable

sequences of order .

Remark 3.1. (AI3f —stat%%)—convergence is well defined for ~v € (0,1]. It is not necessary
to define it for v > 1. To illustrate this, consider (gnop) to be a sequence of fuzzy numbers

defined as

~ t— 3, if n,o,p are odd,
Gnop (t) = ,
1—(t-3), otherwise

fort € [3,4], and the matriz A = (ankoypm) defined as

) if n,o0,p are a cube and
)
k=n31=0%m=p3,
Ankolpm = ) if n,0,p are a non cube and
k=nd4+11=034+1,m=7p3+1,
0, otherwise.
One can easily verify that
oo
(Ag (t))nop = Z ankolpmgklm
k=1,l=1,m=1
(
~ n,o0,p is even non cube or
t—3= (a) )

n,0,p 18 odd cube,

n,o,p is an even cube or

n,o,p is odd non cube.

Therefore, we have

n,0,p are odd cubes or
0;
~ ~ n,o,p are even non cubes,
4((AG (1))0p 1) ==
n,o,p are even cubes or
L
n,o,p are odd non cubes,
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and
) n,0,p are odd cubes or
~ - n,o,p are even non cubes,
4((AG (1)0p 1) =
0 n,o,p are even cubes or
)
n,0,p are odd non cubes.

Assume that v > 1, f () = x and 03 = {(j,, ks, l1)} = r?s*%. Fore >0, ( > 0 we have

{(ris.6) €05 s P (L) € o 0 (A 000) 2 1) 2 €
- {(r,s,t) eN?: hyz > c} € I
and
{(r,s,t) €N f(;lst)f (H(kz,l,m) € Iss + d (A9 B) 2 s}D > C}
- {(r,s,t) e N3 ZVZ > <} € Is.

Thus, (Gnop) s f-lacunary AT _statistically convergent to both @ and b, which is impossible.

Theorem 3.1. Let y = (Jim) and g = (Grim) be two triple fuzzy sequences and v € (0,1].
Then, the subsequent statements are valid:

(a) If( —stm&Y 93> -limg, ; , Ykim = Yooo and z € C, then <AI£ —stat%93> imy g 2Gkim =
2J000-

(b) If < * -stats, 93> -imy, j 1 Gkim = Yooo and (AI:{ —stat%93> — limy, 1 1 Grim = Gooo, then
(AI?{ _Stat’y,e;),) -limyg, 1.y, (Gkim + Grim) = Fooo + Gooo-
Proof. (a) For z = 0, the result holds trivially. Let z # 0, for given ¢ > 0, we obtain
{((k,l,m) € I st : d((A2Y) 11 » 2U000) > €)}
={((k,l,m) € Lsp : |2[ d ((A) gy > Yooo) = €)}
{( (ks 1,m) € Lt + d ((AG)jgn - Go00) > |i|> }

and, so we have

{W&WGN3fég)UH&M@ELM:MMwnmem>€WZC}

€ 13,
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for all ¢ > 0.

(b) It is derived from the fact that

{(k,l,m) € Lse o d((A(F + ) pgm » Yooo + Jooo) > €}
CH{(k,l,m) € L = d(((A (7)) i - Ho00) + ((A () im » Goo0)) = €}
C { (ki tym) € Lot d((A ) - Gon0) > 5 }

{0 t,m) € g+ d((A @) Go00) = 5 } -

Additionally,

{(T737t) € N3 : f(};l'y t) (H(k’l’m) € I'I‘,S,t : d((A (ﬂ +§))klm?§000 +£~7000) > 5}‘) > C}

c {(r,s,t) eN?: f(;zst)f ({kstm) € e A (A @)y To00) = 5 }|) = g}

1 €
3.
: >
U {(r,s,w €N s ({0 lom) € Do d (A @) - 000) 2 5}]) 2 c}
€ IS7
is a consequence of this. Therefore, (b) follows. O

Theorem 3.2. Let f be an unbounded modulus function such that f(zy) > cf ) f(y

for some positive constant c,x,y > 0 and 0 < v < § < 1. Then, we have A% W, 93> C

z$
(A ’ -statAY’gS).

Proof. Let g € (AI3 Wf%QS.f). Then, for e >0 and { > 0

1
f (tht)

(T,S,t) € N3 : f (d((Ag)klm 737000)) =€ € I37 (31)

(kvl:m)el'r,s,t
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and, so we get

(T, Sat) € N3 f(hl“/ ) Z f (d((Ag)klm7g000)) >e
" (el €Ly gt

(7", S7t) € NS : f(hl”./‘t) Z f (d((Ag)klmngOO» Z €
" e lm) el s

> { (rst) €N 75kt WZ)G:I A ((AG) - Foo0) | > €

D ¢ (rs,t) €N : g f ST d((AD) g » Tooo)
(klm)€lr s ¢
A((AG) i o) >

+ > d ((AY) 1y > Yooo) | = €
(kﬂlvm)elr,s,t

d((A®@)) gm0 ) <€

2 (Tasyt) S N3 : f(hl‘s )f Z d((Ag)klm7g000) Zg
(k,l,m)é[ns’t
A((A@))ymsdio) 22

2 (T757t) € N3 : f(hlé )f (\{(k,l,m) € Ir,s,t : d((A (g))klm 7@000) > €}| 5) > C}

rst

> {5t €00 (7 (1) € B (A G o) 2 1) T ©)) 2 )

rst

~—]

This implies

{(T7Svt) € N3 : f(hcé f(’{(k7l7m) € Ir,s,t : d((A (g))klmngOOO) > 5}‘ f(g)) > C}

rst

~—]

- {(T7Svt) € N3 : f(hl"/ ) Z f (d((Ag)klm’QOOO)) > 5} .

t
" (k) el o 4

f
Using |D we obtain § € (AI3 —stat%%). O

Using Lemma [2.1] we can give the following theorem.

Theorem 3.3. Let f be an unbounded modulus function such that limy_ o @ > 0,

limm. g 400 jf((:w% —1and0 <~ <4 <1. Then,

rst
7t zf
<A ’ —stat%93) Ne3 (A) C <A ° W6,03> Ne,(A).

Proof. Assume that limt%ooM = L. Then, by Lemma L < @, for all ¢ > 0.

¢
f
Let y € <A13 —stat%93> N ¢3 (A). Then, there exists positive real number M such that
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d ((A9) kg » Gooo) < M, for any k,l,m € N, and

{(r,s,n e F Lk Lom) € Ly = d (A @) do00) > £}) > c} € Ts.

1
f (tht)
supplies for every ¢ > 0 and ¢ > 0.

Now,

(r,s,t) € N° - hlas) Y. fd((AD)  Gooo)) > &

(k,l,m)elr s,t

Cq(rst)eN3: ﬁ Z f(d((A9) iy, » Yoo0)) = €

(klm)eEl s ¢

= (Ta S, t) € N3 : 1’y ) Z f (d ((Ag)klm ) 5000))
(kL m)El s ¢
d((A(Zj))kzmyng)Z?

T Z J(d((AD) g » Yoo0)) | =€

(k,l,m)ehs t
d klm yO <e
_ 3.1
- { rosit) €N ol > f (M) + > 7 ()
(klm)€Ely ¢ (klm) €l ¢
d((A(D)) i Fooo ) >€ d((A(D)) i TFooo ) <e
= { r,s,t) € N? f(hlw J M) [{(k,1,m) € L« d((A(F))gim - Yooo) = €} = C}
3. hrst >
—i—{rst )EeN f(hzst)f(s)_g}
< {(5.0) € L O0) £ ({010 € Ty (A (D) o) 2 ) 2
. L~ f(hrst
#{tm) € D Eeflmd 0 > ¢
(3.2)
I F(hrst) - (a4
Using limy ¢ 400 f(hgs ) =1, we have § € Wso, | Nloo (A). O
rst

3.1. Fuzzy Korovkin-type theorems. One notable theorem in mathematics is Korovkin’s
theorem, named after the mathematician Korovkin [2I]. This theorem addresses how a
sequence of positive linear operators can uniformly approximate continuous functions defined
on compact metric spaces. Over time, the theorem’s importance has grown across various
mathematical disciplines. Researchers have explored its applications in numerous settings

and have proposed several extensions in areas such as functional analysis, measure theory,
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probability theory, and summability theory (see [2], [16], [27], [32]). In this section, we
apply lacunary triple sequences, modulus functions, and regular matrices to establish a fuzzy
Korovkin-type theorem specifically for triple fuzzy number sequences.

A fuzzy valued function f : [a, b] X [a, b] X [a, b] — Fr is fuzzy continuous at (uoo, Y000, 2000)
in ([a, b])3 = [a,b] X [a,b] x [a,b] if (Wkim, Ykims 2kim) — (U000, Y000, Z000), then

d* (f (Wkims Ykim» Zklm,) ,f(uooo,yoomzooo)) — 0, as k,I,m — oo,

where

d* <f (uklmvyklmvzklm) ) f (U0007y00072000)>

= sup d (JE (uklmayklma Zklm) ) f(uoooyyooo, Zooo)) .
(uy,2)€([a,b])?

If f is fuzzy continuous at every point in [a,b], then f is fuzzy continuous on ([a,b])*. The
set of all fuzzy continuous functions on the interval ([a,b])® is denoted by Cz (([a, b])3), and
C (([a, b])3> represents the space of all continuous functions on ([a, b])®.

An operator T : Cr (([a, b])3) —Cr (([a, b})B) is fuzzy linear, if
T()\l @]El @AQ@fz;u,y,Z) = A1 @T(fgu,y,z) EB)\Q@'T(]FQ;U,y,Z) ,

for every A1, Mo € R and fi1,fo € Cr (([a,b])3). Furthermore, 7 is fuzzy positive linear

operator, if it is fuzzy linear and
’7~ﬂ<f1;u)y)z) < 72 (f?;u7y7z)
for all f~17 f~2 € C}— (([CL, b])3>7 and for any ('U,, Y, Z) S ([CL, b])3 ’ and with f~1 (u7 Y, Z) < f~2 (u7 Y, Z)'

Theorem 3.4. Assume that (ﬁ;lm) be a triple sequence of positive linear operators from
Cr (([a,b])3> to Cr (([a, b])3>. Suppose that there is a sequence (Tiim) of positive linear
operators from C (([a, b])3> into C <([a, b])3> such that

{Tiam (Frwow =)} = T (FE30,02), (kLmeN) (33)
for each f € Cr <([a, b])?’), a €[0,1] and (u,y,z) € ([a,b])®. Then, if

{(k,1,m) € Lot | Taim (9:) — gill > €} € I; (i =0,4), (3.4)
where go =1, g1 =u, go =Y, g3 = 2, g4 = u> + y* + 2%, we have

{(k:,l,m) € Iy s dF (ﬁlm (f) ,f) > 5} € Ty Vf € Ora,b], (3.5)

for every e > 0.
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Theorem 3.5. Consider a fuzzy sequence (’ﬁlm) of positive linear operators from
Cr (([a, b])3) into Cr (([a, b])3>. Suppose there exists a sequence (Tkim) of positive linear
operators from C (([a, b])3) into C (([a, b])3) such that equation holds. If

zf R
<A ’ -Staty,e?,) N Tkim (9:) — gill = 0, (i =0,4), (3.6)
where go = 1,91 = u,go = y,g3 = 2 and g4 = u® +y> + 22, then we have

<AZ£ -stat%93> d* (mm ( f) : f) —0,VYf e Crlab]. (3.7)

Proof. Let f € Cr (([a,b])B) and (u,y,z) € ([a,b])®. Since fF is continuous on ([a, b])*, for

every € > 0 there exists 6 > 0 such that

J (e, . 1) = T (wy,2)] < &, whenever e — u] <

6, |f —yl < 6,|h—z < 6. Since f is fuzzy bounded, we have |f (u,y,z)’ < KZ for all

(u,y,2) € ([a,b])®. Thus, we get

+
o

(e, fh) — fF(u,y,2)| <e+ 2Kk (e—u)?+ (f—y)* + (h—2)? (3.8)

02

for every (e, f,h)., (u,y.2) € ([a,b])*.
Applying (AT (go;u, Y, 2)) g o0 both the sides for a fixed (u,y, z) and by the monotonicity
and linearity of (AT (go;u, Yy, 2)) . We have

‘ (AT ( fE (e, f.h) 3wy, Z))klm - (AT <f§ (w,y,2);u,y, Z))
< | (AT (Liw,y,2)) ol

= ’5 (AT (10,9, 2)) iy + 2’;—; (AT (2 + 2+ h%u,y,2)) . (3.9)
—2u (AT (€54, 2)) iy — 29 (AT (f3 0,95 2)) |

( Niim + (0 +9° 4 2%) (AT (14,95 2)) g | -

a
kim T 2]5675 (AT ((e —u)?+ (f—y)*+ (hki z)? ;u,y,z))
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Using (3.8) and (3.9)), we have

(@ caninn )y - en

= (AT(fi( u,y7Z)>kl — fa (u,y,2) (AT (L g, 2) g
it (w2 ><AT<1 s ) — it (0,2)]

- ( ( a (e, fyh) 2 ) ( ( (w9, 2); u’y’z>>klm
0 2) (AT 0, ) — 1)

< |(aT (i e gmysuy2)) = (AT (Ff wy.2)iwpz)) |
[ (. 2) (AT (.2 >>klm—1>\

< E(AT(l;u,y,z))klm—i—TQ‘" (AT ((e2+ f2+ h?) su,9,2)),y,,

—2u (AT (3% 45 2)) i — 2y (AT (f5 4,9, 2)) i,

—22 (AT (B9, 2)) g + (u? + 97 + 22) (AT (Liw, Y, 2)) g

| it ) (AT (15,9, 2) g = 1)

< |e (AT (1509, 2)) g + 55 [((AT (24 £2 4 52) 31,1, 2)) g, = (02 4 02 4 22))

—2u (AT (&4, Y, 2)) g, — ) — 2y (AT (f5 %, 95 2)) m, — ¥)

=22 (AT (b 4,9, 2)) g — 2) + (2 + 32 + 22) (AT (50, 2)) g, — ]|

| (9 2) (AT (50,9, 2) g — 1)

< |+ & (AT (G, 2)gn — €l + 25 [| (AT (€2 + £2 4 12) 50,9,2)) g, — (02 + 92+ 22)]

+[2u] [(AT (€314, . 2)) g — ul + 1201 [AT (F520,9,2)) g — ¥

+ 122/ [(AT (hyw, y, ) — 21+ (02 + 97 + 22) [(AT (14,9, 2)) gy — 1]

| (9 2) (AT (1510, 2) g — 1)

< et el(AT (150,32 — 1+ B (AT (2 + £+ 1) 50,3, 2)) gy — (02 + 52 + )|

UG Jul [(AT (e + £+ 1) 50,3 2) ) — ul + 255 [y (AT (e + £+ 1) 30,9, 2)) e — 0l
T e+ f+h);u,y,2) m— e (“2 +y? 4+ 2) (AT (L w95 2)) g, — 1

2)

4K |2 (AT (
| £ sy )| 10AT (i, ) = D
< (o PEEREDD 40k ) AT (150,92~ 1
FIGB (AT (e + f + 1) 51,9, 2))g — ul + E5C AT (e + £ + 1) 30,9, 2)) g — ¥l
+ED (AT (4 f + 1) 50,4, 2)) g — 2

F2E (AT (2 + £+ 52) 51, 2)) gy — (02 497+ 27))

< e+ MZ (AT (90w, Y5 2))m — 90| + (AT (915w, 4, 2)) gy, — 91

+ (AT (92514, 2)) g — 92| + (AT (933209, 2))ggn — 931 + (AT (94309, 2)) g — 941)
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where

IC§ 2402 2 "
Mgzmax{eﬁ (B;; D) | ez, zucwégcm,z{é}’
B = max{[ul}, C'=max{[y[} and D = max{|2[}.

Then, taking supremum over (u,y, z) € ([a,b])®, we obtain

H (AT (ﬁ[))klm — fa (wy, Z)H <et+ My g (AT (90)) i — 9ill - (3.10)

Using the definition of d* (.,.) and the relation (3.3)), we have

(T ()= s (7 (Fun)),, Tera) o)

(w,y,2)€([a,b])

)

" (et el max{ {(Af <‘f akd Z))k:lm}; - {f (“’y’z)};

(o7 (), ) )}

= sup sup max{‘ (AT (]on; U, Y, Z))k;lm — fo (w9, 2)

(u,y,2)€([a,b])? @€[0,1]

)

‘(AT (fi;u yvz))klm — [ (w,y,2)
= swp max{]|(a7(47)),,, &

From (3.10) and (3.11)), we have

b

’ (AT ('f;—>>klm - fd

a (a7 (f))klm,f) <et M, f: ICAT (96)) ki — 93l
1=0

where My, = sup,epo,1) max {Mg, M{}.

For a given ¢ > 0, choose € > 0 such that ¢ > €. Then, let

Doy = {(k:,l,m) € lpgy:d <<A7‘ (f)) ,f) > e}

kim

and

t—e€
Dyest = { (61.m) € Ly s 1AT @) — 3l 2 15}

where i = 0,4 and (r,s,t) € N3. Therefore, Dyt C ULODT,SJ;Z-. This implies

r{wm>efm:d*<<ﬁ<f>vf>>k,mZe}
=3 |{

=0

t—e€
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and using (3.6)) for ¢ > 0 we get

{(r,s,t) e N f(;lst)f (H(k:,l,m) € Lpuy:d (<A7' (f»mm’f) > e} ) > g} (3.12)

Zf(]{k,z,m ) € Do NAT (90 - |_3MQ}D>¢}

C {(r,s,t) eEN3: h7

rst

belongs to Z3. Therefore, we have

(Azg -sta%) 0" (Toam (£) - F) =0, ¥f € Crla1].

Example 3.1. Let (§nop) be a triple fuzzy sequence defined by

1, ifn,o,p are squares,

Unop (t) = vt € [0,1].

0, otherwise,

Also, consider the matriz A = (ankolpm) defined by

1, of klm = (nop)2 )

Ankolpm =
0, otherwise.
Then
. > ~ 1, ifn,o,p are squares
(Ay (t))nop = Z AnkolpmYklm = ’ T ’
k=1,=1m=1 0, otherwise, ¥Vt € [0,1].

Now, assume f (x) = x, we have for e > 0,( > 0

{(r s, t) € INERR h“ H{(k,l,m) € Iss - d((A) - 0) > €} > C}

rst

C {(r,s,t) c N3 hf" > (} € Is.

rst

This implies (Gnop) is f-lacunary A-statistical convergent to 0 but it is not convergent to 0.

Let j € Cx([0,1))%, (a,b,¢) € ([0,1])* and consider the fuzzy Bernstein operators

Bnop (g7 a7 b7 C)

-8, () a-orva-srda-omes((15)

1=0,j=0,k=0
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This implies

{Bucp (Fr0,0,0)}

= Bnop (gi:; a,b, C)

- nzp <’Z‘> (j) <Z> a (1—a)" b (1—b)°77 & (1 — )P F g (; % i) :

i=0,5=0,k=0

«

where £ € C ([0, 1])3 and « € [0,1]. We define the sequence of fuzzy positive linear operators
on Cx ([0,1))* as follows:

AT (5 () 10,b,€) = (A9 + 1) © Buop (5, b,)
using these polynomials. Currently,

ATrop (§a5 @, b, ¢)

i n,0,p n o P\ n—i g o—j k p—k ~+ i ] k

= ((Ay)nop+1) Z <Z><]> (k)a (l_a) bj(l_b) c (1_0) Yo (Tl?O’p) .
(3.13)

Then, we calculate

(AT (90: %, Y, 2))pop =

(AT (gly u,y, z))nop =

(AT (92; U, Y, Z))nop =

Since (Azg —stat%%)—limnop Unop = 0, we conclude thatwhere go = 1,91 = u,92 = y,93 =

z,91 = ul + 9% + 22

905U Y5 2))pop = 1,
u

g15u,Y,

nop ’

g3;u)y) :Z’

3 nop

~~ I~ o~ o~

z))
z))
92: U Y5 2)) pop = Y5
z))
z))

— 2 2 2
nop — U +y°+ z°.

g3;u,Y,
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However, since (Unop) is not convergent, Theorem does not work for operator defined by
. This demonstrates the superiority of our Theorem over Theorem .

4. CONCLUSION

In this study, we explore the concepts of strongly f-lacunary A-summability of order -~y
and f-lacunary A%3-statistical convergence of order ~ for sequences of fuzzy numbers. We
also establish that for 0 < v < 1, the f-lacunary AZ3-statistical convergence of order
is well-defined. Moreover, we investigate the relationships between newly defined spaces
and show that, under certain conditions, these spaces are interconnected. As a significant
application, we prove a fuzzy Korovkin-type theorem and provide an example that highlights
the advantages of our result over the classical version. By utilizing f-lacunary AZ3-statistical
convergence, this paper offers a new perspective on the fuzzy Korovkin-type approximation
theorem. Further exploration is needed to fully understand these concepts and the results

pertaining to double sequences of fuzzy numbers.
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