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MORPHISMS AND ALGEBRAIC POINTS ON THE QUOTIENTS OF

FERMAT CURVES AND HURWITZ CURVES

MOUSSA FALL ID ∗ AND MOUSTAPHA CAMARA ID

Abstract. In this paper we determine rational morphisms between the Hurwitz curves of

affine equation : unvl + vn + ul = 0 and the quotients of Fermat curves of affine equation

vm = uλ(u−1) where the integers n > l ≥ 1 are coprime and m = n2−ln+l2 and λ ≥ 1. We

also give a parametrization of the algebraic points of low degree on the quotient of Fermat

curve : v7 = u(u−1)2. Using these morphisms, we explicitly determine the algebraic points

of degree at most 3 on the Hurwitz curve u3v2 + v3 + u2 = 0 birationally isomorphic to the

quotient of Fermat curve v7 = u2(u− 1).
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1. Introduction

Let C be an algebraic curve defined over the rational number field Q and K an extension

field of Q. We denote by C (K) the set of rational points of C witch coordinates ares in K. A

point P ∈ C(Q) is said to be of degree d over Q if its field of definition L is an extension of

Q of degree d. We denote by C(d) (Q) the set of algebraic points of degree at most d on the

curve C over Q. A famous theorem of Faltings states that the number of rational points on

an algebraic curve defined over a number field K is finite if the genus g of the curve is greater

than 1. Currently, for a curve C of genus g ≥ 2 defined over a number field K, there is no

general method for computing the set C (K) or showing that C (K) is empty. But there are
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several methods for finding C (K) in special cases. These methods include the local method,

the Chabauty elliptic method [4], the descent method [10], the Mordell-Weil Sieves method

[3], the Sall-Fall method [9]. These methods are only applicable if the Mordell-Weil group

JC (Q) is known and is of a finite type. If JC (Q) is finite, it is possible to determine C (Q)

and to generalize to all number fields K and thus deduce C(d) (Q) [7]. If we don’t know the

structure of the Mordell-Weil group, then we need to find a way to working around of it.

The purpose of this paper is to describe explicitly the morphisms between Hurwitz curves

of affine equation unvl + vn + ul = 0 and the Fermat quotient curves of affine equation

vm = uλ(u − 1) where n > l ≥ 1, gcd(n, l) = 1, λ ≥ 1 and m = n2 − ln + l2. Using these

morphisms, we explicitly determine the algebraic points of degree at most 3 on the Hurwitz

curves of affine equation u3v2 + v3 + u2 = 0, birationally isomorphic to the Fermat quotient

curve of affine equation v7 = u2(u− 1). Our main results are Theorem 3.2 and Theorem 4.1.

2. Morphisms on Fermat curves and Hurwitz curves

2.1. Fermat curves and quotients of Fermat curves.

Let p be positive integer and K be an number field.

Definition 2.1. The Fermat curve of degree p over a number field K is given by the projective

equation

Fp : U
p + V p +W p = 0.

The affine equation of Fp is

Fp : u
p + vp + 1 = 0.

The Fermat curve Fp is smooth when the characteristic car(K) of K does not divide p and

has genus

g =
(p− 1)(p− 2)

2
.

For a pair (r, s) of positive integers such that 1 ≤ r, s, r + s < p and gcd(r, s, p) = 1, we

denote by Cr,s(p) the quotient of Fp defined by the equation

vp = ur(u− 1)s

where the projection Fp −→ Cr,s(p) is defined by

ϕ : Fp −→ Cr,s(p)

(u, v) 7−→ (−up, (−u)rvs).
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Lemma 2.1. Let Cr,s(p) and Cr′,s′(p) be two quotients of Fermat curve FP . If it exists three

integers k, i and j such that :

(r, s) = k(r′, s′) + p(i, j) and gcd(k, p) = 1,

then we have the birational equivalences

(1) Cr,s(p) ∼= Cr′,s′(p),

(2) Cr,s(p) ∼= Cs,r(p),

(3) Cr,s(p) ∼= Cp−s−r,s(p).

Proof.

(1) Consider the following covering map:

frs : Cr′,s′(p) −→ Cr,s(p)

(u, v) 7−→
(
u, vkui(u− 1)j

)
.

We have the following successive equivalences :

(
u, vkui(u− 1)j

)
∈ Cr,s(p) ⇔

(
vkui(u− 1)j

)p − ur(u− 1)s = 0

⇔ vpkupi(u− 1)pj − ur(u− 1)s = 0

⇔ upi(u− 1)pj
(
vpk − ur−pi(u− 1)s−pj

)
= 0

⇔ upi(u− 1)pj
(
vpk − ukr

′
(u− 1)ks

′
)
= 0

⇔ upi(u− 1)pj
(
vp − ur

′
(u− 1)s

′
) (
vp(k−1) + · · ·

)
= 0.

So

(u, v) ∈ Cr′,s′(p) : v
p − ur

′
(u− 1)s

′
= 0,

then Cr,s(p) is isomorphic to Cr′,s′(p).

(2) Consider the following covering map:

frs : Cr,s(p) −→ Cs,r(p)

(u, v) 7−→ (1− u, (−1)s+rv).

We have

(1− u, (−1)s+rv) ∈ Cs,r(p) ⇐⇒ ((−1)s+rv)
p
= (1− u)s((1− u)− 1)r

⇐⇒ (−1)r+svp = (−1)r+sur(u− 1)s

⇐⇒ (u, v) ∈ Cr,s(p).

(3) Consider the following covering map:

frs : Cr,s(p) −→ Cp−r−s,s(p)

(u, v) 7−→
(
1

u
,
(−1)sv

u

)
.

We have
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1
u ,

(−1)sv
u

)
∈ Cp−r−s,s(p) ⇐⇒

(
(−1)sv

u

)p
=
(
1
u

)p−r−s ( 1
u − 1

)s
⇐⇒ (−1)spvp = (−1)sur(u− 1)s

⇐⇒ (u, v) ∈ Cr,s(p).

□

The following corollary is the consequence of the lemma 2.1.

Corollary 2.1. Let Cr,s(p) be the quotient curve of Fermat. We have

(i) C1,s(p) ∼= Cs,1(p) ∼= Cp−s−1,1(p) ∼= C1,p−s−1(p).

(ii) For 2s ≤ p − 1, the curves C1,1(p), C1,2(p), C1,3(p, ) . . . , C1, p−1
2
(p) form a complete

list (with repetition).

(iii) Any curve Cr,s(7) is birationally isomorphic either to the hyperelliptic curve C1,1(7),

or to the non-hyperelliptic curve C1,2(7) which is itself isomorphic to the Klein curve.

2.2. Hurwitz curves.

Let n and l be positive integers n > l ≥ 1 and K be an number field.

Definition 2.2. The Hurwitz curve Hn,l over K is given by the projective equation

Hn,l : U
nV l + V nW l + U lWn = 0.

The affine equation of Hn,l is

Hn,l : u
nvl + vn + ul = 0.

Let m = n2 − nl + l2. The Hurwitz curve Hn,l has the following genus

g =
m+ 2− 3gcd(n, l)

2
.

The curve Hn,l is smooth when the characteristic car(K) of K is relatively prime to m.

Lemma 2.2. Let n, l be two positive integers such that gcd(n, l) = 1. An integer m > 3 of

the form m = n2 − nl + l2 is prime if and only if m ≡ 1 (mod 6).

Proof. See Bennama and Carbonne [2]. □

Lemma 2.3. Let n and l be integers satisfying 1 ≤ l < n. The Hurwitz curve Hn,l is covered

by the Fermat curve Fm of degree m where m = n2 − nl + l2.
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Proof. Consider the following covering map is provided by [1]

ϕn,l : Fm −→ Hn,l

(u, v) 7−→
(
unv−l, ulvn−l

)
.

The image of the Fermat curve of affine equation Fn2−ln+l2 by the morphism ϕn,l include in

Hn,l.(
unv−l, ulvn−l

)
∈ Hn,l =⇒ (unv−l)n(ulvn−l)l + (ulvn−l)n + (unv−l)l = 0

=⇒ (ulvn−l)n(un
2−ln+l2 + vn

2−ln+l2 + 1) = 0

=⇒ (u, v) ∈ Fn2−ln+l2 .

Therefore the Hurwitz curve Hn,l is covered by the Fermat curve Fn2−ln+l2 . □

In the Table 2.1 we have the following correspondence with Hurwitz curve Hn,l and Fermat

curve Fm where m = n2 − nl + l2.

Table 2.1. Covering map ϕn,l : Fm → Hn,l

n l m Hurwitz curve Hn,l Fermat curve Fm Covering map

3 1 7 H3,1 F7

(
u3v−1, uv2

)
3 2 7 H3,2 F7

(
u3v−2, u2v

)
4 1 13 H4,1 F13

(
u4v−1, uv3

)
4 3 13 H4,3 F13

(
u4v−3, u3v

)
5 2 19 H5,2 F19

(
u5v−2, u2v3

)
5 3 19 H5,3 F19

(
u5v−3, u3v2

)
6 1 31 H6,1 F31

(
u6v−1, uv5

)
6 5 31 H6,5 F31

(
u6v−5, u5v

)

2.3. Birational maps.

Suppose that 1 ≤ l < n and gcd(n, l) = 1. Then there exist integers δ and σ verifying

1 ≤ δ ≤ l, 1 ≤ σ ≤ n− 1 and nδ − σl = 1.

Put λ = σn− δ(n− l) = σ(n− l) + δl − 1. We have 1 ≤ λ ≤ m− 2.

In [2], Bennama and Carbonne show the following proposition :

Proposition 2.1. The Hurwitz curve Hn,l : x
nyl + yn + xl = 0 is isomorphic to Fermat

quotient curve Cλ,1(m) : vm = uλ (u− 1).
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Proof. The birational transformation is as follows

fn,l : Cλ,1(m) −→ Hn,l

(u, v) 7−→


(
(−1)λ v

)n
(−u)σ

,

(
(−1)λ v

)l
(−u)δ


and

gn,l : Hn,l −→ Cλ,1(m)

(x, y) 7−→

(
−xl

yn
,
(−1)λ xδ

yσ

)
.

The composition of applications gives (gn,l ◦ fn,l)(u, v) = (u, v) and (fn,l ◦ gn,l)(x, y) = (x, y).

□

The following Table 2.2 shows the correspondence between Hurwitz curve Hn,l and Fermat

quotient curve Cλ,1(m) where m = n2 − nl + l2 and λ = σn− δ(n− l).

Table 2.2. Birational map fn,l : Cλ,1(m) −→ Hn,l

n l m Hn,l σ δ λ Cλ,1(m) fn,l(u, v)

3 1 7 H3,1 2 1 4 C4,1(7)
(
v3

u2 , − v
u

)
3 2 7 H3,2 1 1 2 C2,1(7)

(
−v3

u , −
v2

u

)
4 1 13 H4,1 3 1 9 C9,1(13)

(
− v4

u3 ,
v
u

)
4 3 13 H4,3 1 1 3 C3,1(13)

(
−v4

u ,
v3

u

)
5 2 19 H5,2 2 1 7 C7,1(19)

(
− v5

u2 , −v2

u

)
5 3 19 H5,3 2 3 9 C4,1(19)

(
− v5

u2 ,
v3

u3

)

Remark 2.1. By combining the Lemma 2.1 and Proposition 2.1, we have

C2,1(7) ∼= C4,1(7) =⇒ H3,2
∼= H3,1.

3. Algebraic points on the curves C1,2(7)

3.1. Auxiliary results.

For a divisor D on C1,2(7), let L(D) denote the Q−vector space of all rational functions f

on C1,2(7) such that f = 0 or div(f) ≥ −D. Let l(D) be the Q−dimension of L(D), u and v

denote the rational functions on C1,2(7) given by

u(U, V, W ) =
U

W
and v(U, V, W ) =

V

W
.
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The projective equation of the curve C1,2(7) is

C1,2(7) : V 7 =W 4U(U −W )2.

Let Q0 = (0, 0, 1), Q1 = (1, 0, 1), Qη = (η, η, 1), Qη = (η, η, 1), Q∞ = (1, 0, 0) and

R0 = −Qη −Qη + 2Q∞ where η is a primitive 6−th root of unity in Q and η is the complex

conjugate of η. The Abel-Jacobi map associated to Q∞ is the embedding

j : C1,2(7) −→ JC1,2(7) (Q)

P 7−→ [P −Q∞]

where [P −Q∞] denotes the class of the divisor P −Q∞. The map j extends by linearity to

the divisors of degree 0 : Div0(C1,2(7)) to JC1,2(7) (Q) where

Div0(C1,2(7)) =

{
n∑

i=1

niPi

∣∣∣∣ n∑
i=1

ni = 0, n ∈ N∗, ni ∈ Z, Pi ∈ C1,2(7)

}
.

The Abel Jacobi theorem is an important result. A simple version is the following.

Theorem 3.1. (Abel-Jacobi) The application j is surjective and its kernel is formed by the

divisors of functions on C. In other words, for a divisor D ∈ Div0(C), there exists f ∈ K∗(C)

such that div(f) = D.

Proof. See Griffiths [6] □

Lemma 3.1. Let C1,2(7) be the curve of affine equation v7 = u(u− 1)2. We have

(1) JC1,2(7) (Q) ∼= Z/7Z⊕ Z/2Z.

(2) JC1,2(7) (Q) =
{
mj(Q0) + pR0

∣∣ 0 ≤ m ≤ 6 and 0 ≤ p ≤ 1
}
.

(3) div(u) = 7Q0 − 7Q∞, div(u− 1) = 7Q1 − 7Q∞ and div(v) = Q0 + 2Q1 − 3Q∞.

(4) 7j(Q0) = 7j(Q1) = 0, j(Q0) + 2j(Q1) = 0, 2j(R0) = 0.

Proof. See Sall [7] □

Lemma 3.2. The Q−basis of the L(mQ∞) on the curve C1,2(7) for 1 ≤ m ≤ 11 are

• L(Q∞) = L(2Q∞) =< 1 >, • L(3Q∞) = L(4Q∞) =< 1, v >,

• L(5Q∞) =< 1, v, v4

u−1 >, • L(6Q∞) =< 1, v, v4

u−1 , v
2 >,

• L(7Q∞) =< 1, v, v4

u−1 v
2, u >, • L(8Q∞) =< 1, v, v4

u−1 , v
2, u, v5

u−1 >,

• L(9Q∞) =< 1, v, v4

u−1 , v
2, u, v5

u−1 , v
3 >,

• L(10Q∞) =< 1, v, v4

u−1 , v
2, u, v5

u−1 , v
3, uv >,

• L(11Q∞) =< 1, v, v4

u−1 , v
2, u, v5

u−1 , v
3, uv, v6

u−1 >.

Proof. See Sall [7] □
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3.2. The Main result on C1,2(7).

The main result in the curve C1,2(7) is the following theorem.

Theorem 3.2. The set of algebraic points of degree at most 3 on the quotient of Fermat

curve C1,2(7) over Q is C1,2(7)(3)(Q) = M1 ∪M2 ∪M3 where

(1) The set of rational points is M1 = {Q0, Q1, Q∞}.

(2) The set of quadratic points is M2 =
{
Qη, Qη

}
.

(3) The set of cubic points is M3 = P1 ∪ P2 ∪ P3 ∪ P4 with

P1 =
{
(u, θ)

∣∣u3 − 2u2 + u− θ7 = 0, θ ∈ Q∗},
P2 =

{(
1 + θv2+α, v

) ∣∣ v3−2α − θ3v2+α − θ2 = 0, θ ∈ Q∗, α ∈ {0, 1}
}
,

P3 =
{(

1 + αv4 + (α− 1)v, v
) ∣∣ v3 + v2 − 1 = 0, α ∈ {0, 1}

}
,

P4 =
{(
αv3 − v2 + α, v

) ∣∣ v3 + (−1)α(2v2 + v) + 1 = 0, α ∈ {0, 1}
}
.

Proof. Let P be an algebraic point on C1,2(7) of degree d ≤ 3 over Q; if d ≤ 2 these points

are described by Faddeev ([5]) and Sall ([7]), so we can assume that d = 3. Let P1, P2, P3

be the Galois conjugates of P . Then none of the points Pi is equal to the algebraic points

on C1,2(7) of degree ≤ 2 over Q. We have

[P1 + P2 + P3 − 3Q∞] ∈ J(C1,2(7))(Q)

and Lemma 3.1 gives

[P1 + P2 + P3 − 3Q∞] = mj(Q0) + pj(R0) with 0 ≤ m ≤ 6 and 0 ≤ p ≤ 1. (3.1)

The possible combinations for m and p are given in the Table 3.3

Table 3.3. combinations for m and p

m 0 1 2 3 4 5 6 0 1 2 3 4 5 6

p 0 0 0 0 0 0 0 1 1 1 1 1 1 1

We distinguish 14 cases to study.

Case 1 : m = 0 and p = 0.

The formula (3.1) becomes [P1+P2+P3− 3Q∞] = 0. The Abel-Jacobi Theorem 3.1 implies

the existence of a rational function f defined over Q such that

div(f) = P1 + P2 + P3 − 3Q∞.
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So f ∈ L(3P∞), hence f = a0 + a1v with ai ̸= 0. At points Pi, we have a0 + a1v = 0 so

v = −a0
a1

∈ Q∗. By putting v = θ in the equation v7 = u(u− 1)2 we have

u3 − 2u2 + u− θ7 = 0.

So we have the set of family cubic points

P1 =
{
(u, θ) | u3 − 2u2 + u− θ7 = 0, θ ∈ Q∗} .

Case 2 : m = 1 and p = 0 :

The relation (3.1) becomes [P1 +P2 +P3 − 3Q∞] = [Q0 −Q∞] = −6[Q0 −Q∞]. This means

[P1 + P2 + P3 + 6Q0 − 9Q∞] = 0.

There exists a function f such that

div(f) = P1 + P2 + P3 + 6Q0 − 9Q∞.

Therefore f ∈ L(9Q∞), hence

f = a0 + a1v + a2
v4

u− 1
+ a3v

2 + a4u+ a5
v5

u− 1
+ a6v

3.

The function f is of order 6 at the point Q0, so a0 = a1 = a2 = a3 = a5 = a6 = 0, thus

f = a4u. At points Pi, a4u = 0, hence a4 = 0 or u = 0 which is absurd.

Cases 1 to 14 : By similar reasoning to the two previous cases, the results obtained can be

summarized in the Table 3.4.

Table 3.4. Summary of solutions for all cases

m p Set of cubic points

0 0 P1

1 0 Absurd

2 0 P2 with α = 0

3 0 P2 with α = 1

4 0 Absurd

5 0 absurd

6 0 Absurd

m p Set of cubic points

0 1 P3 with α = 0

1 1 P3 with α = 1

2 1 P4 with α = 0

3 1 Absurd

4 1 Absurd

5 1 P4 with α = 1

6 1 Absurd

□
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4. Algebraic points of low degree on Hurwitz curve

In this section we use birational maps to give algebraic points of low degree on H3,2.

4.1. Preliminary results.

Lemma 4.1. If two curves X and Y defined over a number field K are birationally equivalent

then X is isomorphic to Y and X (K) ∼= Y(K).

Proof. See Perrin [8]. □

4.2. Main result on the Hurwitz curve H3,2.

Let P0 = (0, 0), ∞− = (1, 0) and ∞+ = (0, 1). The main result is the following theorem :

Theorem 4.1. Let H
(3)
3,2 (Q) be the set of algebraic points of degree at most 3 on the Hurwitz

curves H3,2 over Q, then H
(3)
3,2 (Q) = L1 ∪ L2 ∪ L3 where

(1) The set of rational points is L1 = {P0, ∞−, ∞+}

(2) The set of quadratic points is L2 = {(−η,−η), (−η,−η)}

(3) The set of cubic points is L3 = G1 ∪ G2 ∪ G3 ∪ G4 with

G1 =
{(

θ3

1−u ,
θ2

u−1

) ∣∣u3 − 2u2 + u− θ7 = 0, θ ∈ Q∗
}
,

G2 =
{(

−v1−α

θ , v
−α

θ

) ∣∣ v3−2α − θ3v2+α − θ2 = 0, θ ∈ Q∗, α ∈ {0, 1}
}
,

G3 =
{(

v2

1−α−αv3
,− v

1−α−αv3

) ∣∣ v3 + v2 − 1 = 0, α ∈ {0, 1}
}
,

G4 =
{(

v3

1−α+v2−αv3
,− v2

1−α+v2−αv3

) ∣∣ v3 + (−1)α(2v2 + v) + 1 = 0, α ∈ {0, 1}
}
.

Proof.

• The Remark 2.1 gives H3,2
∼= C2,1(7) and by using theorem 3.2, we have #H3,2(Q) =

3. An elementary search give us the set

L1 = {P0, ∞−, ∞+}.

• We use birational maps to determine the quadratic and cubic points on the curve

H3,2. Let

φ : C1,2(7) −→ C2,1(7)

(u, v) 7−→ (1− u,−v)

and

ψ : C2,1(7) −→ H3,2

(u, v) 7−→ (−v3

u ,−
v2

u ).
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Thus, we have

ψ ◦ φ : C1,2(7) −→ H3,2

(u, v) 7−→ ( v3

1−u ,−
v2

1−u).

(a) The set of quadratic points on H3,2 are given by

L2 = (ψ ◦ φ) (M2) .

We obtain

L2 =
{
(ψ ◦ φ)(η, η), (ψ ◦ φ)(η, η)

}
=
{
(−η,−η), (−η,−η)

}
.

(b) The set of cubic points on H3,2 are given by G1 ∪ G2 ∪ G3 ∪ G4 with

Gi = (ψ ◦ φ) (Pi) , for i ∈ {1, 2, 3, 4}.

We obtain

G1 =
{( θ3

1− u
,
θ2

u− 1

) ∣∣u3 − 2u2 + u− θ7 = 0, θ ∈ Q∗
}
;

G2 =
{(

−v
1−α

θ
,
v−α

θ

) ∣∣ v3−2α − θ3v2+α − θ2 = 0, θ ∈ Q∗, α ∈ {0, 1}
}
;

G3 =
{( v2

1− α− αv3
,− v

1− α− αv3

) ∣∣ v3 + v2 − 1 = 0, α ∈ {0, 1}
}
;

G4 =
{( v3

1− α+ v2 − αv3
,− v2

1− α+ v2 − αv3

) ∣∣ v3 + (−1)α(2v2 + v) + 1 = 0, α ∈ {0, 1}
}
.

□
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