

International Journal of Maps in Mathematics Volume 8, Issue 1, 2025, Pages:297-308 E-ISSN: 2636-7467 www.simadp.com/journalmim

MORPHISMS AND ALGEBRAIC POINTS ON THE QUOTIENTS OF FERMAT CURVES AND HURWITZ CURVES

MOUSSA FALL (D) * AND MOUSTAPHA CAMARA (D)

ABSTRACT. In this paper we determine rational morphisms between the Hurwitz curves of affine equation : $u^n v^l + v^n + u^l = 0$ and the quotients of Fermat curves of affine equation $v^m = u^{\lambda}(u-1)$ where the integers $n > l \ge 1$ are coprime and $m = n^2 - ln + l^2$ and $\lambda \ge 1$. We also give a parametrization of the algebraic points of low degree on the quotient of Fermat curve : $v^7 = u(u-1)^2$. Using these morphisms, we explicitly determine the algebraic points of degree at most 3 on the Hurwitz curve $u^3v^2 + v^3 + u^2 = 0$ birationally isomorphic to the quotient of Fermat curve $v^7 = u^2(u-1)$.

Keywords: Hurwitz curve, Quotient of Fermat curve, Morphism, Degree of algebraic point2010 Mathematics Subject Classification:14H40, 14L40.

1. INTRODUCTION

Let \mathcal{C} be an algebraic curve defined over the rational number field \mathbb{Q} and K an extension field of \mathbb{Q} . We denote by $\mathcal{C}(K)$ the set of rational points of \mathcal{C} witch coordinates areas in K. A point $P \in \mathcal{C}(\overline{\mathbb{Q}})$ is said to be of degree d over \mathbb{Q} if its field of definition L is an extension of \mathbb{Q} of degree d. We denote by $\mathcal{C}^{(d)}(\mathbb{Q})$ the set of algebraic points of degree at most d on the curve \mathcal{C} over \mathbb{Q} . A famous theorem of Faltings states that the number of rational points on an algebraic curve defined over a number field K is finite if the genus g of the curve is greater than 1. Currently, for a curve \mathcal{C} of genus $g \geq 2$ defined over a number field K, there is no general method for computing the set $\mathcal{C}(K)$ or showing that $\mathcal{C}(K)$ is empty. But there are

Received:2024.03.31

Revised:2024.12.12

Accepted:2024.12.19

Moustapha Camara & m.camara5367@zig.univ.sn & https://orcid.org/0009-0009-8917-0711.

^{*} Corresponding author

Moussa Fall \diamond m.fall@univ-zig.sn \diamond https://orcid.org/0000-0003-3880-7603

several methods for finding $\mathcal{C}(K)$ in special cases. These methods include the local method, the Chabauty elliptic method [4], the descent method [10], the Mordell-Weil Sieves method [3], the Sall-Fall method [9]. These methods are only applicable if the Mordell-Weil group $J_{\mathcal{C}}(\mathbb{Q})$ is known and is of a finite type. If $J_{\mathcal{C}}(\mathbb{Q})$ is finite, it is possible to determine $\mathcal{C}(\mathbb{Q})$ and to generalize to all number fields K and thus deduce $\mathcal{C}^{(d)}(\mathbb{Q})$ [7]. If we don't know the structure of the Mordell-Weil group, then we need to find a way to working around of it. The purpose of this paper is to describe explicitly the morphisms between Hurwitz curves of affine equation $u^n v^l + v^n + u^l = 0$ and the Fermat quotient curves of affine equation $v^m = u^{\lambda}(u-1)$ where $n > l \ge 1$, $\gcd(n,l) = 1$, $\lambda \ge 1$ and $m = n^2 - ln + l^2$. Using these morphisms, we explicitly determine the algebraic points of degree at most 3 on the Hurwitz curves of affine equation $u^3v^2 + v^3 + u^2 = 0$, birationally isomorphic to the Fermat quotient curve of affine equation $v^7 = u^2(u-1)$. Our main results are Theorem 3.2 and Theorem 4.1.

2. Morphisms on Fermat curves and Hurwitz curves

2.1. Fermat curves and quotients of Fermat curves.

Let p be positive integer and K be an number field.

Definition 2.1. The Fermat curve of degree p over a number field K is given by the projective equation

$$F_p: U^p + V^p + W^p = 0.$$

The affine equation of F_p is

$$F_p: u^p + v^p + 1 = 0.$$

The Fermat curve F_p is smooth when the characteristic car(K) of K does not divide p and has genus

$$g = \frac{(p-1)(p-2)}{2}.$$

For a pair (r, s) of positive integers such that $1 \leq r, s, r + s < p$ and gcd(r, s, p) = 1, we denote by $C_{r,s}(p)$ the quotient of F_p defined by the equation

$$v^p = u^r (u-1)^s$$

where the projection $F_p \longrightarrow C_{r,s}(p)$ is defined by

$$\phi: F_p \longrightarrow C_{r,s}(p)$$
$$(u,v) \longmapsto (-u^p, (-u)^r v^s)$$

Lemma 2.1. Let $C_{r,s}(p)$ and $C_{r',s'}(p)$ be two quotients of Fermat curve F_P . If it exists three integers k, i and j such that :

$$(r,s) = k(r',s') + p(i,j)$$
 and $gcd(k,p) = 1$,

then we have the birational equivalences

- (1) $C_{r,s}(p) \cong C_{r',s'}(p),$
- (2) $C_{r,s}(p) \cong C_{s,r}(p),$
- (3) $C_{r,s}(p) \cong C_{p-s-r,s}(p).$

Proof.

(1) Consider the following covering map:

$$\begin{aligned} f_{rs}: & C_{r',s'}(p) & \longrightarrow & C_{r,s}(p) \\ & (u,v) & \longmapsto & \left(u, v^k u^i (u-1)^j\right). \end{aligned}$$

We have the following successive equivalences :

$$(u, v^{k}u^{i}(u-1)^{j}) \in C_{r,s}(p) \quad \Leftrightarrow (v^{k}u^{i}(u-1)^{j})^{p} - u^{r}(u-1)^{s} = 0 \Leftrightarrow v^{pk}u^{pi}(u-1)^{pj} - u^{r}(u-1)^{s} = 0 \Leftrightarrow u^{pi}(u-1)^{pj} (v^{pk} - u^{r-pi}(u-1)^{s-pj}) = 0 \Leftrightarrow u^{pi}(u-1)^{pj} (v^{pk} - u^{kr'}(u-1)^{ks'}) = 0 \Leftrightarrow u^{pi}(u-1)^{pj} (v^{p} - u^{r'}(u-1)^{s'}) (v^{p(k-1)} + \cdots) = 0$$

 So

$$(u,v) \in C_{r',s'}(p) : v^p - u^{r'}(u-1)^{s'} = 0,$$

then $C_{r,s}(p)$ is isomorphic to $C_{r',s'}(p)$.

(2) Consider the following covering map:

$$f_{rs}: \quad C_{r,s}(p) \longrightarrow \quad C_{s,r}(p)$$
$$(u,v) \longmapsto \quad (1-u,(-1)^{s+r}v).$$

We have

$$(1 - u, (-1)^{s+r}v) \in C_{s,r}(p) \iff ((-1)^{s+r}v)^p = (1 - u)^s ((1 - u) - 1)^r \\ \iff (-1)^{r+s}v^p = (-1)^{r+s}u^r (u - 1)^s \\ \iff (u, v) \in C_{r,s}(p).$$

(3) Consider the following covering map:

$$f_{rs}: \quad C_{r,s}(p) \longrightarrow \quad C_{p-r-s,s}(p)$$
$$(u,v) \longmapsto \quad \left(\frac{1}{u}, \frac{(-1)^s v}{u}\right).$$

We have

M. FALL AND M. CAMARA

$$\begin{pmatrix} \frac{1}{u}, \frac{(-1)^{s}v}{u} \end{pmatrix} \in C_{p-r-s,s}(p) \iff \left(\frac{(-1)^{s}v}{u}\right)^{p} = \left(\frac{1}{u}\right)^{p-r-s} \left(\frac{1}{u}-1\right)^{s}$$
$$\iff (-1)^{sp}v^{p} = (-1)^{s}u^{r}(u-1)^{s}$$
$$\iff (u,v) \in C_{r,s}(p).$$

The following corollary is the consequence of the lemma 2.1.

Corollary 2.1. Let $C_{r,s}(p)$ be the quotient curve of Fermat. We have

- (i) $C_{1,s}(p) \cong C_{s,1}(p) \cong C_{p-s-1,1}(p) \cong C_{1,p-s-1}(p).$
- (ii) For $2s \leq p-1$, the curves $C_{1,1}(p)$, $C_{1,2}(p)$, $C_{1,3}(p,) \dots, C_{1,\frac{p-1}{2}}(p)$ form a complete list (with repetition).
- (iii) Any curve $C_{r,s}(7)$ is birationally isomorphic either to the hyperelliptic curve $C_{1,1}(7)$, or to the non-hyperelliptic curve $C_{1,2}(7)$ which is itself isomorphic to the Klein curve.

2.2. Hurwitz curves.

Let n and l be positive integers $n > l \ge 1$ and K be an number field.

Definition 2.2. The Hurwitz curve $H_{n,l}$ over K is given by the projective equation

$$H_{n\,l}: U^n V^l + V^n W^l + U^l W^n = 0.$$

The affine equation of $H_{n,l}$ is

$$H_{n,l}: u^n v^l + v^n + u^l = 0.$$

Let $m = n^2 - nl + l^2$. The Hurwitz curve $H_{n,l}$ has the following genus

$$g = \frac{m+2-3\gcd(n,l)}{2}.$$

The curve $H_{n,l}$ is smooth when the characteristic car(K) of K is relatively prime to m.

Lemma 2.2. Let n, l be two positive integers such that gcd(n, l) = 1. An integer m > 3 of the form $m = n^2 - nl + l^2$ is prime if and only if $m \equiv 1 \pmod{6}$.

Proof. See Bennama and Carbonne [2].

Lemma 2.3. Let n and l be integers satisfying $1 \le l < n$. The Hurwitz curve $H_{n,l}$ is covered by the Fermat curve F_m of degree m where $m = n^2 - nl + l^2$.

Proof. Consider the following covering map is provided by [1]

$$\begin{array}{rcccc} \phi_{n,l}: & F_m & \longrightarrow & H_{n,l} \\ & & (u,v) & \longmapsto & \left(u^n v^{-l}, \, u^l v^{n-l}\right) \end{array}$$

The image of the Fermat curve of affine equation $F_{n^2-ln+l^2}$ by the morphism $\phi_{n,l}$ include in $H_{n,l}$.

$$\begin{split} \left(u^{n}v^{-l}, \, u^{l}v^{n-l}\right) &\in H_{n,l} \implies (u^{n}v^{-l})^{n}(u^{l}v^{n-l})^{l} + (u^{l}v^{n-l})^{n} + (u^{n}v^{-l})^{l} = 0 \\ \implies (u^{l}v^{n-l})^{n}(u^{n^{2}-ln+l^{2}} + v^{n^{2}-ln+l^{2}} + 1) = 0 \\ \implies (u,v) \in F_{n^{2}-ln+l^{2}}. \end{split}$$

Therefore the Hurwitz curve $H_{n,l}$ is covered by the Fermat curve $F_{n^2-ln+l^2}$.

In the Table 2.1 we have the following correspondence with Hurwitz curve $H_{n,l}$ and Fermat curve F_m where $m = n^2 - nl + l^2$.

n	l	m	Hurwitz curve $H_{n,l}$	Fermat curve F_m	Covering map		
3	1	7	$H_{3,1}$	F_7	$\left(u^3v^{-1},uv^2\right)$		
3	2	7	$H_{3,2}$	F_7	$\left(u^3v^{-2},u^2v\right)$		
4	1	13	$H_{4,1}$	F_{13}	(u^4v^{-1}, uv^3)		
4	3	13	$H_{4,3}$	F_{13}	(u^4v^{-3}, u^3v)		
5	2	19	$H_{5,2}$	F_{19}	(u^5v^{-2}, u^2v^3)		
5	3	19	$H_{5,3}$	F_{19}	(u^5v^{-3}, u^3v^2)		
6	1	31	$H_{6,1}$	F ₃₁	(u^6v^{-1}, uv^5)		
6	5	31	$H_{6,5}$	F_{31}	$\left(u^{6}v^{-5},u^{5}v ight)$		

TABLE 2.1. Covering map $\phi_{n,l}: F_m \to H_{n,l}$

2.3. Birational maps.

Suppose that $1 \leq l < n$ and gcd(n, l) = 1. Then there exist integers δ and σ verifying

$$1 \le \delta \le l$$
, $1 \le \sigma \le n-1$ and $n\delta - \sigma l = 1$.

Put $\lambda = \sigma n - \delta(n-l) = \sigma(n-l) + \delta l - 1$. We have $1 \le \lambda \le m - 2$.

In [2], Bennama and Carbonne show the following proposition :

Proposition 2.1. The Hurwitz curve $H_{n,l}$: $x^n y^l + y^n + x^l = 0$ is isomorphic to Fermat quotient curve $C_{\lambda,1}(m)$: $v^m = u^{\lambda} (u-1)$.

Proof. The birational transformation is as follows

$$f_{n,l}: C_{\lambda,1}(m) \longrightarrow H_{n,l}$$

$$(u,v) \longmapsto \left(\frac{\left((-1)^{\lambda}v\right)^n}{(-u)^{\sigma}}, \frac{\left((-1)^{\lambda}v\right)^l}{(-u)^{\delta}}\right)$$

and

$$g_{n,l}: \quad H_{n,l} \quad \longrightarrow \quad C_{\lambda,1}(m)$$
$$(x,y) \quad \longmapsto \quad \left(\frac{-x^l}{y^n}, \frac{(-1)^{\lambda} x^{\delta}}{y^{\sigma}}\right).$$

The composition of applications gives $(g_{n,l} \circ f_{n,l})(u, v) = (u, v)$ and $(f_{n,l} \circ g_{n,l})(x, y) = (x, y)$.

The following Table 2.2 shows the correspondence between Hurwitz curve $H_{n,l}$ and Fermat quotient curve $C_{\lambda,1}(m)$ where $m = n^2 - nl + l^2$ and $\lambda = \sigma n - \delta(n - l)$.

n	l	m	$H_{n,l}$	σ	δ	λ	$C_{\lambda,1}(m)$	$f_{n,l}(u,v)$
3	1	7	$H_{3,1}$	2	1	4	$C_{4,1}(7)$	$\left(\frac{v^3}{u^2}, -\frac{v}{u}\right)$
3	2	7	$H_{3,2}$	1	1	2	$C_{2,1}(7)$	$\left(-\frac{v^3}{u}, -\frac{v^2}{u}\right)$
4	1	13	$H_{4,1}$	3	1	9	$C_{9,1}(13)$	$\left(-\frac{v^4}{u^3}, \frac{v}{u}\right)$
4	3	13	$H_{4,3}$	1	1	3	$C_{3,1}(13)$	$\left(-\frac{v^4}{u}, \frac{v^3}{u}\right)$
5	2	19	$H_{5,2}$	2	1	7	$C_{7,1}(19)$	$\left(-\frac{v^5}{u^2}, -\frac{v^2}{u}\right)$
5	3	19	$H_{5,3}$	2	3	9	$C_{4,1}(19)$	$\left(-\frac{v^5}{u^2}, \frac{v^3}{u^3}\right)$

TABLE 2.2. Birational map $f_{n,l}: \mathcal{C}_{\lambda,1}(m) \longrightarrow H_{n,l}$

Remark 2.1. By combining the Lemma 2.1 and Proposition 2.1, we have

$$C_{2,1}(7) \cong C_{4,1}(7) \Longrightarrow H_{3,2} \cong H_{3,1}.$$

3. Algebraic points on the curves $C_{1,2}(7)$

3.1. Auxiliary results.

For a divisor D on $\mathcal{C}_{1,2}(7)$, let $\mathcal{L}(D)$ denote the $\overline{\mathbb{Q}}$ -vector space of all rational functions fon $\mathcal{C}_{1,2}(7)$ such that f = 0 or $\operatorname{div}(f) \geq -D$. Let l(D) be the $\overline{\mathbb{Q}}$ -dimension of $\mathcal{L}(D)$, u and vdenote the rational functions on $\mathcal{C}_{1,2}(7)$ given by

$$u(U, V, W) = \frac{U}{W}$$
 and $v(U, V, W) = \frac{V}{W}$.

The projective equation of the curve $C_{1,2}(7)$ is

$$C_{1,2}(7): V^7 = W^4 U (U - W)^2.$$

Let $Q_0 = (0, 0, 1)$, $Q_1 = (1, 0, 1)$, $Q_{\eta} = (\eta, \overline{\eta}, 1)$, $\overline{Q_{\eta}} = (\overline{\eta}, \eta, 1)$, $Q_{\infty} = (1, 0, 0)$ and $R_0 = -Q_{\eta} - \overline{Q_{\eta}} + 2Q_{\infty}$ where η is a primitive 6-th root of unity in $\overline{\mathbb{Q}}$ and $\overline{\eta}$ is the complex conjugate of η . The Abel-Jacobi map associated to Q_{∞} is the embedding

$$j: \quad \mathcal{C}_{1,2}(7) \quad \longrightarrow \quad J_{\mathcal{C}_{1,2}(7)}\left(\mathbb{Q}\right)$$
$$P \qquad \longmapsto \quad [P-Q_{\infty}]$$

where $[P - Q_{\infty}]$ denotes the class of the divisor $P - Q_{\infty}$. The map j extends by linearity to the divisors of degree 0 : $Div^{0}(\mathcal{C}_{1,2}(7))$ to $J_{\mathcal{C}_{1,2}(7)}(\mathbb{Q})$ where

$$Div^{0}(\mathcal{C}_{1,2}(7)) = \left\{ \sum_{i=1}^{n} n_{i} P_{i} \mid \sum_{i=1}^{n} n_{i} = 0, \ n \in \mathbb{N}^{*}, \ n_{i} \in \mathbb{Z}, \ P_{i} \in \mathcal{C}_{1,2}(7) \right\}.$$

The Abel Jacobi theorem is an important result. A simple version is the following.

Theorem 3.1. (Abel-Jacobi) The application j is surjective and its kernel is formed by the divisors of functions on C. In other words, for a divisor $D \in Div^0(C)$, there exists $f \in K^*(C)$ such that div(f) = D.

Proof. See Griffiths [6]

Lemma 3.1. Let $C_{1,2}(7)$ be the curve of affine equation $v^7 = u(u-1)^2$. We have

(1) $J_{\mathcal{C}_{1,2}(7)}(\mathbb{Q}) \cong \mathbb{Z}/7\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}.$ (2) $J_{\mathcal{C}_{1,2}(7)}(\mathbb{Q}) = \{ mj(Q_0) + pR_0 \mid 0 \le m \le 6 \text{ and } 0 \le p \le 1 \}.$ (3) $div(u) = 7Q_0 - 7Q_\infty, \ div(u-1) = 7Q_1 - 7Q_\infty \ and \ div(v) = Q_0 + 2Q_1 - 3Q_\infty.$ (4) $7j(Q_0) = 7j(Q_1) = 0, \quad j(Q_0) + 2j(Q_1) = 0, \quad 2j(R_0) = 0.$

Proof. See Sall [7]

Lemma 3.2. The $\overline{\mathbb{Q}}$ -basis of the $\mathcal{L}(mQ_{\infty})$ on the curve $\mathcal{C}_{1,2}(7)$ for $1 \leq m \leq 11$ are

 $\begin{array}{ll} \bullet \ \mathcal{L}(Q_{\infty}) = \mathcal{L}(2Q_{\infty}) = <1>, & \bullet \ \mathcal{L}(3Q_{\infty}) = \mathcal{L}(4Q_{\infty}) = <1, v>, \\ \bullet \ \mathcal{L}(5Q_{\infty}) = <1, v, \frac{v^4}{u-1}>, & \bullet \ \mathcal{L}(6Q_{\infty}) = <1, v, \frac{v^4}{u-1}, v^2>, \\ \bullet \ \mathcal{L}(7Q_{\infty}) = <1, v, \frac{v^4}{u-1}v^2, u>, & \bullet \ \mathcal{L}(8Q_{\infty}) = <1, v, \frac{v^4}{u-1}, v^2, u, \frac{v^5}{u-1}>, \\ \bullet \ \mathcal{L}(9Q_{\infty}) = <1, v, \frac{v^4}{u-1}, v^2, u, \frac{v^5}{u-1}, v^3>, \\ \bullet \ \mathcal{L}(10Q_{\infty}) = <1, v, \frac{v^4}{u-1}, v^2, u, \frac{v^5}{u-1}, v^3, uv>, \\ \bullet \ \mathcal{L}(11Q_{\infty}) = <1, v, \frac{v^4}{u-1}, v^2, u, \frac{v^5}{u-1}, v^3, uv>, \\ \end{array}$

Proof. See Sall [7]

3.2. The Main result on $C_{1,2}(7)$.

The main result in the curve $C_{1,2}(7)$ is the following theorem.

Theorem 3.2. The set of algebraic points of degree at most 3 on the quotient of Fermat curve $C_{1,2}(7)$ over \mathbb{Q} is $C_{1,2}(7)^{(3)}(\mathbb{Q}) = \mathcal{M}_1 \cup \mathcal{M}_2 \cup \mathcal{M}_3$ where

- (1) The set of rational points is $\mathcal{M}_1 = \{Q_0, Q_1, Q_\infty\}.$
- (2) The set of quadratic points is $\mathcal{M}_2 = \{Q_\eta, \overline{Q_\eta}\}.$
- (3) The set of cubic points is $\mathcal{M}_3 = \mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3 \cup \mathcal{P}_4$ with

$$\mathcal{P}_{1} = \left\{ (u,\theta) \mid u^{3} - 2u^{2} + u - \theta^{7} = 0, \ \theta \in \mathbb{Q}^{*} \right\},$$

$$\mathcal{P}_{2} = \left\{ \left(1 + \theta v^{2+\alpha}, v \right) \mid v^{3-2\alpha} - \theta^{3} v^{2+\alpha} - \theta^{2} = 0, \ \theta \in \mathbb{Q}^{*}, \ \alpha \in \{0,1\} \right\},$$

$$\mathcal{P}_{3} = \left\{ \left(1 + \alpha v^{4} + (\alpha - 1)v, v \right) \mid v^{3} + v^{2} - 1 = 0, \ \alpha \in \{0,1\} \right\},$$

$$\mathcal{P}_{4} = \left\{ \left(\alpha v^{3} - v^{2} + \alpha, v \right) \mid v^{3} + (-1)^{\alpha} (2v^{2} + v) + 1 = 0, \ \alpha \in \{0,1\} \right\}.$$

Proof. Let P be an algebraic point on $C_{1,2}(7)$ of degree $d \leq 3$ over \mathbb{Q} ; if $d \leq 2$ these points are described by Faddeev ([5]) and Sall ([7]), so we can assume that d = 3. Let P_1 , P_2 , P_3 be the Galois conjugates of P. Then none of the points P_i is equal to the algebraic points on $C_{1,2}(7)$ of degree ≤ 2 over \mathbb{Q} . We have

$$[P_1 + P_2 + P_3 - 3Q_{\infty}] \in J(\mathcal{C}_{1,2}(7))(\mathbb{Q})$$

and Lemma 3.1 gives

$$[P_1 + P_2 + P_3 - 3Q_\infty] = mj(Q_0) + pj(R_0) \text{ with } 0 \le m \le 6 \text{ and } 0 \le p \le 1.$$
(3.1)

The possible combinations for m and p are given in the Table 3.3

TABLE 3.3. combinations for m and p

m	0	1	2	3	4	5	6	0	1	2	3	4	5	6
р	0	0	0	0	0	0	0	1	1	1	1	1	1	1

We distinguish 14 cases to study.

Case 1 : m = 0 and p = 0.

The formula (3.1) becomes $[P_1 + P_2 + P_3 - 3Q_{\infty}] = 0$. The Abel-Jacobi Theorem 3.1 implies the existence of a rational function f defined over \mathbb{Q} such that

$$\operatorname{div}(f) = P_1 + P_2 + P_3 - 3Q_{\infty}.$$

So $f \in \mathcal{L}(3P_{\infty})$, hence $f = a_0 + a_1 v$ with $a_i \neq 0$. At points P_i , we have $a_0 + a_1 v = 0$ so $v = -\frac{a_0}{a_1} \in \mathbb{Q}^*$. By putting $v = \theta$ in the equation $v^7 = u(u-1)^2$ we have

$$u^3 - 2u^2 + u - \theta^7 = 0.$$

So we have the set of family cubic points

$$\mathcal{P}_1 = \{(u,\theta) \mid u^3 - 2u^2 + u - \theta^7 = 0, \ \theta \in \mathbb{Q}^*\}.$$

Case 2 : m = 1 and p = 0 :

The relation (3.1) becomes $[P_1 + P_2 + P_3 - 3Q_\infty] = [Q_0 - Q_\infty] = -6[Q_0 - Q_\infty]$. This means

$$[P_1 + P_2 + P_3 + 6Q_0 - 9Q_\infty] = 0.$$

There exists a function f such that

$$\operatorname{div}(f) = P_1 + P_2 + P_3 + 6Q_0 - 9Q_{\infty}.$$

Therefore $f \in \mathcal{L}(9Q_{\infty})$, hence

$$f = a_0 + a_1v + a_2\frac{v^4}{u-1} + a_3v^2 + a_4u + a_5\frac{v^5}{u-1} + a_6v^3.$$

The function f is of order 6 at the point Q_0 , so $a_0 = a_1 = a_2 = a_3 = a_5 = a_6 = 0$, thus $f = a_4 u$. At points P_i , $a_4 u = 0$, hence $a_4 = 0$ or u = 0 which is absurd.

Cases 1 to 14: By similar reasoning to the two previous cases, the results obtained can be summarized in the Table 3.4.

TABLE 3.4. Summary of solutions for all cases

m	р	Set of cubic points	m	р	Set of cubic points
0	0	\mathcal{P}_1	0	1	\mathcal{P}_3 with $\alpha = 0$
1	0	Absurd	1	1	\mathcal{P}_3 with $\alpha = 1$
2	0	\mathcal{P}_2 with $\alpha = 0$	2	1	\mathcal{P}_4 with $\alpha = 0$
3	0	\mathcal{P}_2 with $\alpha = 1$	3	1	Absurd
4	0	Absurd	4	1	Absurd
5	0	absurd	5	1	\mathcal{P}_4 with $\alpha = 1$
6	0	Absurd	6	1	Absurd

4. Algebraic points of low degree on Hurwitz curve

In this section we use birational maps to give algebraic points of low degree on $H_{3,2}$.

4.1. Preliminary results.

Lemma 4.1. If two curves \mathcal{X} and \mathcal{Y} defined over a number field K are birationally equivalent then \mathcal{X} is isomorphic to \mathcal{Y} and $\mathcal{X}(K) \cong \mathcal{Y}(K)$.

Proof. See Perrin [8].

4.2. Main result on the Hurwitz curve $H_{3,2}$.

Let $P_0 = (0,0), \infty_- = (1,0)$ and $\infty_+ = (0,1)$. The main result is the following theorem :

Theorem 4.1. Let $H_{3,2}^{(3)}(\mathbb{Q})$ be the set of algebraic points of degree at most 3 on the Hurwitz curves $H_{3,2}$ over \mathbb{Q} , then $H_{3,2}^{(3)}(\mathbb{Q}) = \mathcal{L}_1 \cup \mathcal{L}_2 \cup \mathcal{L}_3$ where

- (1) The set of rational points is $\mathcal{L}_1 = \{P_0, \infty_-, \infty_+\}$
- (2) The set of quadratic points is $\mathcal{L}_2 = \{(-\eta, -\overline{\eta}), (-\overline{\eta}, -\eta)\}$
- (3) The set of cubic points is $\mathcal{L}_3 = \mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{G}_3 \cup \mathcal{G}_4$ with

$$\begin{aligned} \mathcal{G}_{1} &= \left\{ \left(\frac{\theta^{3}}{1-u}, \frac{\theta^{2}}{u-1} \right) \left| u^{3} - 2u^{2} + u - \theta^{7} = 0, \ \theta \in \mathbb{Q}^{*} \right\}, \\ \mathcal{G}_{2} &= \left\{ \left(-\frac{v^{1-\alpha}}{\theta}, \frac{v^{-\alpha}}{\theta} \right) \left| v^{3-2\alpha} - \theta^{3}v^{2+\alpha} - \theta^{2} = 0, \ \theta \in \mathbb{Q}^{*}, \ \alpha \in \{0,1\} \right\}, \\ \mathcal{G}_{3} &= \left\{ \left(\frac{v^{2}}{1-\alpha-\alpha v^{3}}, -\frac{v}{1-\alpha-\alpha v^{3}} \right) \left| v^{3} + v^{2} - 1 = 0, \ \alpha \in \{0,1\} \right\}, \\ \mathcal{G}_{4} &= \left\{ \left(\frac{v^{3}}{1-\alpha+v^{2}-\alpha v^{3}}, -\frac{v^{2}}{1-\alpha+v^{2}-\alpha v^{3}} \right) \left| v^{3} + (-1)^{\alpha}(2v^{2} + v) + 1 = 0, \ \alpha \in \{0,1\} \right\}. \end{aligned} \right.$$

Proof.

The Remark 2.1 gives H_{3,2} ≅ C_{2,1}(7) and by using theorem 3.2, we have #H_{3,2}(Q) =
3. An elementary search give us the set

$$\mathcal{L}_1 = \{P_0, \, \infty_-, \, \infty_+\}.$$

• We use birational maps to determine the quadratic and cubic points on the curve $H_{3,2}$. Let

$$\varphi: C_{1,2}(7) \longrightarrow C_{2,1}(7)$$

 $(u,v) \longmapsto (1-u,-v)$

and

$$\psi: \quad C_{2,1}(7) \quad \longrightarrow \quad H_{3,2}$$
$$(u,v) \quad \longmapsto \quad \left(-\frac{v^3}{u}, -\frac{v^2}{u}\right)$$

Thus, we have

$$\psi \circ \varphi : \quad C_{1,2}(7) \longrightarrow H_{3,2}$$
$$(u,v) \longmapsto (\frac{v^3}{1-u}, -\frac{v^2}{1-u}).$$

(a) The set of quadratic points on $H_{3,2}$ are given by

$$\mathcal{L}_2 = (\psi \circ \varphi) \left(\mathcal{M}_2 \right).$$

We obtain

$$\mathcal{L}_{2} = \left\{ (\psi \circ \varphi)(\eta, \overline{\eta}), \ (\psi \circ \varphi)(\overline{\eta}, \eta) \right\} = \left\{ (-\eta, -\overline{\eta}), \ (-\overline{\eta}, -\eta) \right\}.$$

(b) The set of cubic points on $H_{3,2}$ are given by $\mathcal{G}_1 \cup \mathcal{G}_2 \cup \mathcal{G}_3 \cup \mathcal{G}_4$ with

$$\mathcal{G}_i = (\psi \circ \varphi) (\mathcal{P}_i), \quad \text{for } i \in \{1, 2, 3, 4\}.$$

We obtain

$$\mathcal{G}_{1} = \left\{ \left(\frac{\theta^{3}}{1-u}, \frac{\theta^{2}}{u-1} \right) \mid u^{3} - 2u^{2} + u - \theta^{7} = 0, \ \theta \in \mathbb{Q}^{*} \right\};$$

$$\mathcal{G}_{2} = \left\{ \left(-\frac{v^{1-\alpha}}{\theta}, \frac{v^{-\alpha}}{\theta} \right) \mid v^{3-2\alpha} - \theta^{3}v^{2+\alpha} - \theta^{2} = 0, \ \theta \in \mathbb{Q}^{*}, \ \alpha \in \{0,1\} \right\};$$

$$\mathcal{G}_{3} = \left\{ \left(\frac{v^{2}}{1-\alpha - \alpha v^{3}}, -\frac{v}{1-\alpha - \alpha v^{3}} \right) \mid v^{3} + v^{2} - 1 = 0, \ \alpha \in \{0,1\} \right\};$$

$$\mathcal{G}_{4} = \left\{ \left(\frac{v^{3}}{1-\alpha + v^{2} - \alpha v^{3}}, -\frac{v^{2}}{1-\alpha + v^{2} - \alpha v^{3}} \right) \mid v^{3} + (-1)^{\alpha} (2v^{2} + v) + 1 = 0, \ \alpha \in \{0,1\} \right\}.$$

References

- [1] Aguglia, A., Korchmaros, G. & Torres, F. (2001). Plane maximal curves. Acta Arith., 98(2), 165-179.
- [2] Bennama, H. & Carbonne, P. (1996). Courbes xⁿy^m + yⁿ + x^m = 0 et décomposition de la jacobienne.
 J. Algebra, 188(2), 409-417.
- [3] Bruin, N. & Stoll, M. (2010). The Mordell-Weil sieve: proving the nonexistence of Rational points on curves. LMS Journal of Computing Mathematics, 13, 272-306.
- [4] Coleman, R. F. (1985). Effective Chabauty. Duke Math. J. 52, no. 3, 765-770.
- [5] Faddeev, D.(1961). On the divisor class groups of some algebraic curves. Dokl. Akad. Nauk SSSR 136, 296–298. English translation: Soviet Math. Dokl. 2 (1), 67–69.
- [6] Griffiths, P. A. (1989). Introduction to algebraic curves. In : Translations of mathematical monographs, vol. 76. American Mathematical Society, Providence, RI
- [7] Sall, O. (2003). Points algébriques sur certains quotients de courbes de Fermat. C. R. Acad. Sci. Paris Ser I, 336, 117-120.
- [8] Perrin, D. (1995). Géométrie algébrique, une introduction. Interéditions, Paris.

- [9] Sall, O., Fall, M. & Top, T. (2015). Points algébriques de petits degrés sur les courbes C_n d'équation affine $y^{3n} = x(x-1)(x-2)(x-3)$. Annales Mathématiques Africaines, Volume 5 pp. 25 28
- [10] Siksek, S. & Stoll, M. (2012). Partial descent on hyper elliptic curves and the generalized Fermat equation $x^3 + y^4 + z^5 = 0$. Bul. London Math. Soc. 44, 151-166.

DEPARTMENT OF MATHEMATICS, ASSANE SECK UNIVERSITY, ZIGUINCHOR, SENEGAL

DEPARTMENT OF MATHEMATICS, ASSANE SECK UNIVERSITY, ZIGUINCHOR, SENEGAL