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PROPERTIES OF DIVISOR PRIME GRAPH

SANJOY KALITA ID AND MRIDUL DUTTA ID 2,∗

Abstract. Number theory is a mathematical discipline that uses concepts from graph the-

ory. Recently, various graphs have been defined in relation to various number theoretic

functions. One such graph is the divisor prime graph, which is associated with the positive

divisors of a positive integer. Let n be a positive integer and D(n) be the set of all positive

divisors of n. The divisor prime graph PGD(n) is defined as a graph whose vertex set is

D(n) and any two vertices x and y are adjacent in PGD(n) iff gcd(x, y) = 1. In this study,

families of divisor prime graphs for different positive integers are investigated, along with

their graph theoretic characteristics such as adjacency, diameter, radius, clique number,

chromatic number, planarity, connectivity, independence number and density.

Keywords: Divisor, Prime factor, Greatest common divisor, Connectedness, Diameter,

Girth, Radius, Isomorphism, Planar graph.
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1. Introduction

In 2000, Singh and Santhosh [15] introduced the idea of divisor graphs. A divisor graph

G is an ordered pair (V,E) where V is a subset of Z and uv ∈ E if and only if either u|v

or v|u for all u ̸= v. Many authors had studied an alternative construction of graphs by

associating with algorithmic approach on MV-algebras[9], Zero divisor graphs[1, 2], total

graphs, prime graphs[14]. Any graph isomorphic to a divisor graph is also called a divisor

graph. Additionally, they have pointed out some of the graphs those which are divisor
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graphs and also those which are not. Chartrand et al. [6] studied many more additional

properties of divisor graph. Le Anh Vinh [17] also established the existence of a divisor

graph of order n and size m for every pair of m,n ∈ Z with 0 ≤ m ≤ n. Christopher

Frayer [8] conducted research on the necessary conditions for a Cartesian product graph

to be a divisor graph. Yu-ping Tsao [16] has examined several properties of D([n]) and its

complement, including the vertex-chromatic number, the clique number, the cover number,

and independence number, where [n] = {i : 1 ≤ i ≤ n, n ∈ N}. Nathanson [13] introduced

the concepts and the notion of congruences from number theory in Graph Theory. He

initiated the new way for the emergence of a new class of graphs, namely, arithmetic graphs.

An arithmetic graph is one in which any two vertices a and b are adjacent if and only if

a + b ≡ c(mod n) where c ∈ S, a pre-assigned subset of V . Its vertex set V is the set of

the first n positive integers 1, 2, 3, . . . , n. Let (G, ·) be a finite group and S ⊆ G such that

s−1 ∈ S for all s ∈ S. S is called symmetric subset of G. A Cayley graph C(G,S) is the

graph in which the vertex set V = G and the edge set E = {(a, b) : a−1b ∈ S or b−1a ∈

S, ∀a, b ∈ G}. If (G, ·) = (Zn,+) and the symmetric set S is associated with some arithmetic

function, then such Cayley graphs are called arithmetic Cayley graphs. Dejter and Giudici

[7], Berrizabeitia and Giudici [3] and others have studied the cycle structure of Cayley graphs

associated with certain arithmetic functions. The circumference and girth of the arithmetic

Cayley graphs are investigated by Madhavi and Maheswari [11], associated with the Euler

totient function ϕ(n), and divisor function d(n). The cycle structure of these graphs has

many applications in engineering and communication networks. Chalapati, Madhavi and

Venkataramana [5] studied the enumeration of triangles in these graphs. The Divisor Prime

graph was a novel idea developed by S. M. Nair and J. S. Kumar[12], who also looked into its

structural characteristics. They integrated the concepts of prime graphs and divisor function

graphs in this follow-up. In that study, maximum and minimum degrees, a null graph, an

Euler graph, a cycle, a complete graph, and a bipartite graph are examined for a divisor

prime graph.

In this paper, we have studied the properties of the divisor prime graph, its diameter,

girth, colorability, planarity, density, etc. Any number theory or graph theory terms can be

looked up in [4, 10], or any other standard literature.
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2. Preliminaries

A graph is a set of objects represented graphically, with links connecting some pairs of

objects. The points that represent the connected objects are referred to as vertices or points,

and the links that join the vertices are called edges or lines. The majority of the definitions

we have included here come from scholarly articles and standard literature.

A graph G is a pair of set G = (V,E), where V is a set of all vertices or points and E is

a set of all edges or lines, connecting the vertices.

A graph is called connected if there is a path between every pair of vertices, otherwise, it

is a disconnected graph.

In a graph, two vertices are said to be adjacent if they are connected by a common edge

and two edges are said to be adjacent, if there is a common vertex between the two edges.

The degree of vertex in a graph is defined as the number of edges incident to the vertex,

say v, or the number of vertices that is adjacent to the vertex v. It is denoted by deg(v).

The minimum and maximum degrees of a graph G is denoted by δ(G) and ∆(G).

If all the vertices in the graph have the same degree, then the graph is called a regular

graph. If k is the degree of the vertex, then the graph is called a k-regular graph. A connected

2-regular graph is also called a cycle graph.

A graph is said to be complete if each and every vertex is connected to each other. A

complete graph of n vertices (i.e Kn) is a (n − 1)- regular graph. A graph G = (V,E)

whose vertices can be partitioned into two disjoint and independent sets V = V1 ∪ V2 such

that every edge of E connects a vertex in V1 to a vertex in V2 is called a bipartite graph. A

bipartite graph in which each vertex of the first set is connected to every vertex of the second

set is called a complete bipartite graph. A star graph is a complete bipartite graph of the

form K1,n−1 with n-vertices, i.e., one set will have only one vertex and all the remaining

vertices belong to the other set, and all these vertices are adjacent to that single vertex and

not to each other. A star graph with n vertices is denoted by Sn. A graph where the degree

of all its vertices is 0 is called a null graph and a graph where there is only one point (thus

degree=0) is called a trivial graph.

A walk of a graph is an alternating sequence of points and lines beginning and ending with

points, where each line is incident with the two points immediately preceding and following

it. If all the lines of a walk are distinct, then it is called a trail and if all the points are

distinct, then it is called a path.
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The distance between the two vertices is the length of a geodesic between that pair of

vertices. Distance between a pair of vertices u and v is denoted by d(u, v). The maximum

distance of a vertex, say v, from all the other vertex is called the eccentricity of a vertex. It

is denoted by e(v). The minimum eccentricity of all the vertices in the graph is considered

the radius of the graph. It is denoted by r(G). The maximum eccentricity of all the vertices

in the graph is considered the diameter of the graph. It is denoted by d(G).

Simple graphs G and H are called isomorphic if there is a bijection f from the vertices of

G to the vertices of H such that (v, w) is an edge in G if and only if (f(v), f(w)) is an edge

of H.

A simple, connected graph is called planar if there is a way to draw it on a plane so that

no edges cross. Such a drawing is called an embedding of the graph in the plane.

The Girth of a simple graph is the shortest cycle contained in the graph and if there is

no cycle in the graph then its girth is undefined. A complete subgraph in a graph is often

called a clique. A clique having n number of vertices is called n − clique. The size of the

largest clique of a graph G is called the clique number of G. It is denoted by cl(G).

A subset I of V is an independent set of a graph G = (V,E) if the vertices in I are not

adjacent to each other. The independence number β0(G) is the size of a largest independent

set in G.

The divisor function or Tau function, is a number-theoretic function that counts the

positive divisors of an integer n. It is represented by the symbol τ(n). In the prime factor-

ization of n, it can be written as the product of one and the exponent of each prime factor.

The Tau function can be found mathematically for a positive integer n with prime factoriza-

tion n = pa11 pa22 · · · pakk , where p1, p2, . . . , pk are distinct prime numbers and a1, a2, . . . , ak are

positive integers representing the exponents. Then τ(n) = (a1 + 1)(a2 + 1) · · · (ak + 1).

Numerous branches of number theory, such as the study of perfect numbers, integer se-

quences, and cryptography, employ the Tau function. In conclusion, the Tau function counts

the number of prime factors, while prime factorization is the process of breaking down a

positive integer into its prime factors.

3. Properties of Divisor Prime Graph

The divisior prime graph presents a pictorial view of the relation between the positive

divisors of a natural number n. We expect that the investigation of the theoretical properties

of these graphs can help to determine some number theoretic properties of these numbers.
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In this section, we discuss some properties of the divisor prime graph PGD(n) for n ∈ Z+

like diameter, girth, radius, clique number, planarity, etc.

Let us start the with the formal definition of the divisor prime graph PGDn .

Definition 3.1. (Divisor Prime Graph)[12]

Let n ∈ Z+ and D(n) = {m ∈ Z+ : m|n}. The divisor prime graph PGD(n) is defined

as a graph with the vertex set D(n) and any two vertices x and y are adjacent in PGD(n) if

gcd(x, y) = 1.

Example 3.1. The divisor prime graphs for n = 10, 11, 12 are shown in figure 1.

1

2

5

10

1 11

1

2

3

4

6

12

(a) (b) (c)

Figure 1. (a) PGD(10) (b) PGD(11) (c) PGD(12)

Theorem 3.1. [12] For all n ∈ Z+, PGD(n) is connected.

Proof. Since for every n ∈ Z+, 1 ∈ D(n) and gcd(1, d) = 1 for all d ∈ D(n), so the vertex 1

is adjacent to every vertex d in D(n). Hence PGD(n) is connected for all n. □

Theorem 3.2. [12] For all n ∈ Z+,

∆(PGD(n)) = τ(n)− 1 and δ(PGD(n)) = 1.

Moreover, ∆(PGD(n)) = δ(PGD(n)) if n = 1 or n is a prime.

Proof. For every n ∈ Z+, let τ(n) is the number of divisor of n. The vertex 1 is adjacent to

all the vertices d ̸= 1 of PGD(n) and we have deg(1) = τ(n)− 1, which is maximum possible

degree for any graph with τ(n) vertices. Thus ∆(PGD(n)) = τ(n)− 1.

Also gcd(n, d) ̸= 1 for all divisors d ̸= 1 of n and gcd(n, 1) = 1, so n is adjacent only to 1

and since PGD(n) is connected so there is no isolated vertex. Thus δ(PGD(n)) = 1.

Since for n prime PGD(n) ∼= K2, thus ∆(PGD(n)) = δ(PGD(n)). □

Theorem 3.3. [12] PGD(n) is non-eulerian for all n.
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Theorem 3.4. For all n ∈ Z+, Diam(PGD(n)) ≤ 2.

Proof. If n = 1 then PGD(n) ∼= K1 and Diam(PGD(n)) = 0.

If n is prime then PGD(n) ∼= K2 and Diam(PGD(n)) = 1.

It is clear from theorem 3.1 that for composite n, any two non adjacent vertices u and v in

PGD(n), u− 1− v is always the shortest u− v-path. So Diam(PGD(n)) = 2.

So we can conclude that Diam(PGD(n)) ≤ 2. □

Theorem 3.5. For all n ∈ Z+, rad(PGD(n)) = 1.

Proof. Since PGD(n) is connected and Diam(PGD(n)) ≤ 2 by theorems 3.1 and 3.4, the

ecentricity 1 ≤ e(v) ≤ 2, ∀ v ∈ V (PGD(n)), therefore rad(PGD(n)) = min{e(v) : v ∈

V (PGD(n))} = 1. □

Theorem 3.6. For all n ∈ Z+, let k be the number of distinct prime divisors of n, then

cl(PGD(n)) = k + 1.

Proof. Let pi, i = 1, 2, . . . , k be the distinct prime divisors of n. Since for distinct i and

j, gcd(pi, pj) = 1, so pi adjacent pj . Thus the vertices 1, p1, p2, . . . , pk induced a complete

subgraph of order k + 1.

Let v = pipj be a vertex of PGD(n), then gcd(v, pi) ̸= 1, gcd(v, pj) ̸= 1 but gcd(v, pr) =

1, ∀r ̸= i, j which implies that the vertex v adjacent to all pr, r ̸= i, j. So the vertices

1, p1, p2, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . . , pk, v will induce a complete subgraph of order k.

That is any set of vertices more than k + 1 cannot induce a complete graph. Thus the

complete subgraph induced by the vertices 1, p1, p2, . . . , pk is the maximal clique in PGD(n).

Hence cl(PGD(n)) = k + 1. □

Theorem 3.7. For all n ∈ Z+, girth(PGD(n)) = 3 or ∞.

Proof. If n = 1 then girth(PGD(n)) = ∞.

If n is prime then PGD(n) ∼= K2 and girth(PGD(n)) = ∞.

If n = pk where k ∈ Z+, then PGD(n) ∼= K1,τ(n)−1 and so girth(PGD(n)) = ∞.

If n has more than one prime divisors, it is clear from theorem 3.6 that PGD(n) always

contain a cycle of length 3. So girth(PGD(n)) = 3.

So we can conclude that girth(PGD(n)) = 3 or ∞. □
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We obtained some counter examples to the statement in Theorem 2.5 given by Nair and

Kapur in [12]. So we modified the theorem and provided a proof and an example supporting

our result.

Theorem 3.8. For any k ∈ Z+, if n = p1p2 · · · pk, then PGD(n)− n can not be a complete

graph.

Proof. For n = p1p2 · · · pk,

D(n) = {1, p1, p2, · · · , pk, p1p2, · · · p1pk, p1p2 . . . , pk−1, p1p2, p1p2 . . . pk}.

So V (PGD(n))− n = {1, p1, p2, · · · , pk, p1p2, · · · p1pk, p1p2 . . . , pk−1, · · · p2, p2 . . . pk}.

The vertices 1, p1, p2, · · · , pk will induce a complete subgraph. But the vertex set of the

graph contains more vertices in the form of product of primes. These vertices are adjacent to

vertex 1 as well as to some of the vertices of p1, p2, · · · , pk but not to all. Hence PGD(n)−n

is not a complete graph. □
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Figure 2. (a) PGD(30) (b) PGD(30)− 30

Following the theorems 3.6 and 3.8 finally we can give the following result.

Theorem 3.9. Let n1 = pα1
1 pα2

2 · · · pαk
k and n2 = qα1

1 qα2
2 · · · qαk

k , then PGD(n1) ∼= PGD(n2).

Proof. Since n1 = pα1
1 pα2

2 · · · pαk
k and n2 = qα1

1 qα2
2 · · · qαk

k , so

τ(n1) = τ(n2) = (α1 + 1)(α2 + 1) · · · (αk + 1).

That is |V (PGD(n1))| = |V (PGD(n2))|.

Let us consider the mapping f : D(n1) → D(n2) defined by

f(pr11 pr22 · · · prkk ) = qr11 qr22 · · · qrkk
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where 0 ≤ ri ≤ αi for each i = 1, 2, . . . , k.

So f is a one-one correspondence fromD(n1) ontoD(n2), i.e. f is a one-one correspondence

from V (PGD(n1)) onto V (PGD(n2)).

It is now sufficient to prove that f preserves the adjacency from PGD(n1) to PGD(n2)

i.e. (a, b) ∈ E(PGD(n1)) ⇔ (f(a), f(b)) ∈ E(PGD(n2)).

If possible, let (a, b) ∈ E(PGD(n1)) but (f(a), f(b)) /∈ E(PGD(n2)).

Then there exists at least one qi such that qi| gcd(f(a), f(b))

⇒ qi|f(a) and qi|f(b)

⇒ ∃ pi such that f(pi) = qi and pi|a and pi|b

⇒ pi| gcd(a, b)

which is a contradiction to the fact that (a, b) ∈ E(PGD(n1)).

Thus (a, b) ∈ E(PGD(n1)) ⇔ (f(a), f(b)) ∈ E(PGD(n2)) for all a, b ∈ V (PGD(n1)). Hence

PGD(n1) ∼= PGD(n2). □

Theorem 3.10. Let n ∈ Z+ then PGD(n) is planar if n is any one of the following form

pk, pkq, p2q2 or pqr, where p, q, r are primes and k is nonzero positive integer.

Proof. If n = 1 then PGD(n) is trivial and so is planar.

If n is prime then PGD(n) ∼= K2 and PGD(n) is planar.

If n = pk where k ∈ Z+, then PGD(n) ∼= K1,τ(n)−1 and so PGD(n) is planar as shown in

figure 3(a).

If n = pkq, the vertices are 1, p, p2, p3, · · · pk−1, pk, q, pq, p2q, p3q, · · · pk−1q, pkq and the graph

PGD(n) which is clearly a planar graph as shown in figure 3(b).

If n = p2q2, 1, p, p2, q, q2, pq, p2q, pq2, p2q2 are the only vertices and from the figure 4(a) it is

clear that the graph PGD(n) is planar graph.

If n = pqr, the vertices are 1, p, q, r, pq, qr, pr, and pqr and the graph PGD(n) which is

clearly a planar graph as shown in figure 4(b).

If n = p3q2, then the vertices 1, p, p2, p3, q, q2 together give K3,3 as a induced subgraph of

PGD(p
3q2) because of which we can conclude that the graph PGD(p

3q2) is not a planar

graph. Thus for all n = piqj ∀i, j > 2 the graph PGD(p
iqj) is not a planar graph.

If n = p2qr, then the vertices 1, p, p2, q, r together give the induce subgraphK5 of PGD(p
2qr)

and so the graph PGD(p
2qr) is not a planar graph. Thus for all n = piqjrk ∀i, j, k > 1 the

graph PGD(p
iqjrk) is not a planar graph.
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Figure 4. (a) PGD(p
2q2) (b) PGD(pqr)

It is clear from theorem 3.6 that if n has more than 3 distinct prime factors than PGD(n)

has a clique of order greater than 4. Which implies that PGD(n) for n with more than 3

prime factors is not planar.

Hence we can conclude that PGD(n) is planar only for the values n = 1, pk, pkq, p2q2

and pqr, where p, q, r are distinct primes and k is a nonzero positive integer. □

Theorem 3.11. For any n = pα1
1 pα2

2 · · · pαk
k , χ(PGD(n)) = k + 1 where αi ≥ 0 .

Proof. We know that for any graph G, cl(G) ≤ χ(G). From theorem 3.6 it is clear that

k + 1 = cl(PGD(n)) ≤ χ(PGD(n)).

Let us assign k + 1 colors to the vertices 1, p1, p2, · · · pk of the maximal clique. Any of the

remaining vertices, say d, will have at least one of the primes p1, p2, · · · pk as a factor, say

pi. Then gcd(d, pi) = pi and so (d, pi) /∈ E(PGD(n)). Thus d can be assigned with the same

color assigned to pi. Let di and dj be any two vertices such that pi|di and pj |dj ,then they can
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be assigned the colors of pi and pj respectively. Now let d be a vertex such that pipj |d then d

is not adjacent to any of pi, pj , di and dj , so we can assign any one color from these vertices

to the vertex d. Proceeding with the same argument we can have a proper (k + 1)- coloring

of PGD(n). Thus χ(PGD(n)) ≤ k+1. Hence we can conclude that χ(PGD(n)) = k+1. □

Theorem 3.12. Let n = pα1
1 pα2

2 · · · pαk
k and αr = max{αi : 1 ≤ i ≤ k}. Then

β0(PGD(n)) = (τ(pαr
r )− 1)(τ(n/pαr

r )).

Proof. Here n = pα1
1 pα2

2 · · · pαk
k and αr = max{αi : 1 ≤ i ≤ k}.

It is easy to see that each of the sets Ii = {psid : 1 ≤ s ≤ αi, d|Πj ̸=ipj} is an independent set

of PGD(n). The number of elements in Ii is given by

|Ii| = τ(n)− (τ(n/pαi
i )) = (τ(pαi

i )− 1)τ(n/pαi
i ).

To prove the result it is sufficient to show that

|Ir| = max{|Ii| : 1 ≤ i ≤ k} = (τ(pαr
r )− 1)τ(n/pαr

r ).

Now for 1 ≤ i ≤ k and i ̸= r, τ(pαi
i ) < τ(pαr

r )

⇒ τ(pαi
i n′) < τ(pαr

r n′), whhere n′ = Πj ̸=i,rpj

⇒ τ(n)− τ(pαi
i n′) > τ(n)− τ(pαr

r n′)

⇒ τ(n)− τ(n/pαr
r ) > τ(n)− τ(n/pαi

i )

⇒ (τ(pαr
r )− 1)τ(n/pαr

r ) > (τ(pαi
i )− 1)τ(n/pαi

i )

⇒ |Ir| > |Ii| for all 1 ≤ i ≤ k and i ̸= r

⇒ |Ir| = max{|Ii| : 1 ≤ i ≤ k}

Hence β0(PGD(n)) = (τ(pαr
r )− 1)τ(n/pαr

r ). □

Theorem 3.13. PGD(n) is non-hamiltonian for all n.

Proof. PGD(n) is non-hamiltonian as deg(n) = 1 in PGD(n) and there can not exists any

hamiltonian cycle in PGD(n). □

A subset D of V is a dominating set for a graph G = (V,E) if every vertex in V −D is

adjacent to at least one member of D. The domination number γ(G) is the size of a smallest

dominating set for G.

Theorem 3.14. Domination number of PGD(n) is 1 for all n.

Proof. It is clear from the definition that for the set D = 1 ⊂ V (PGD(n)), every vertex

v ∈ V (PGD(n)) − 1 is adjacent to 1. That is 1 is a dominating set for PGD(n) and is the

smallest dominating set. Hence γ(PGD(n)) = 1. □
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A subset C of V is a dominating cut vertex set for a graph G = (V,E) if G−C is either a

disconnected graph or a trivial graph. The point connectivity κ(G) is the size of a smallest

cut vertex set for G. A subset C ′ of E is a cut set for a graph G = (V,E) if G − C ′ is a

disconnected graph. The line connectivity λ(G) is the size of a smallest cut set for G.

Theorem 3.15. Both point and line connectivity of PGD(n) is 1 for all n.

Proof. It is clear from the definition of PGD(n) that PGD(n) − 1 is a disconnected graph,

so κ(PGD(n)) = 1. Also PGD(n)− (1, n) is always disconnected, so λ(PGD(n)) = 1. □

Theorem 3.16. For all prime p, Den(PGD(p)) = 1.

Proof. Since for every prime p, PGD(p) ∼= K2 so Den(PGD(p)) = 1. □

Theorem 3.17. For all prime p and k ∈ Z, k ≥ 0, Den(PGD(p
k)) =

2

k + 1
.

Proof. For n = pk, PGD(p
k) has k + 1 vertices and k edges. So Den(PGD(p

k)) =
k

k+1C2
=

k

{(k + 1)k}/2
=

2

k + 1
. □

Theorem 3.18. Let n = pα1
1 pα2

2 · · · pαk
k then Den(PGD(n)) =

∑
di|n τ(

n
di
)

2 · τ(n)C2
.

Proof. For each divisor di of n, deg(di) = τ( n
di
). So o(E(PGD(n))) =

1

2

∑
di|n

τ

(
n

di

)
.

Hence Den(PGD(n)) =

∑
di|n τ(

n
di
)

2 · τ(n)C2
. □

4. Conclusion

In this study, we have investigated the nature and characteristics of the divisor prime graph.

The adjacency, diameter, radius, clique number, chromatic number, planarity, connectivity,

independence number, and domination number features of the divisor prime graph have also

been investigated. Since this is a preliminary investigation of divisor prime graphs, the reader

may be thinking about various issues. Studying the energy and distance eigenvalues of the

divisor prime graph can reveal some potential problems.
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