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SHAPE STABILITY OF A QUADRATURE SURFACE PROBLEM IN

INFINITE RIEMANNIAN MANIFOLDS

ABABACAR SADIKHE DJITE ID ∗ AND DIARAF SECK

Abstract. In this paper, we revisit a quadradure surface problem in shape optimization.

With tools from infinite-dimensional Riemannian geometry, we give simple control over how

an optimal shape can be characterized. The framework of the infinite-dimensional Riemann-

ian manifold is essential in the control of optimal geometric shape. The covariant derivative

plays a key role in calculating and analyzing the qualitative properties of the shape hessian.

Control only depends on the mean curvature of the domain, which is a minimum or a criti-

cal point. In the two-dimensional case, Gauss-Bonnet’s theorem gives a control within the

framework of the algorithm for the minimum.

Keywords: Stability, quadrature surface, shape optimization, Riemannian manifold, Gauss-

Bonnet theorem
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1. Introduction

The search for the notion of quadratures made a prodigious leap forward (1669-1704)

thanks to Leibniz and Newton who, with the infinitesimal calculus, made the link between

quadrature and derivative. An interesting reminder could be to explain the link with shape

optimization. Regarding, a bounded domain Ω ⊂ RN with regular boundary, for instance C2,

µ a signed measure compactly supported in Ω, it is well known there is a measure σ called

a balayage measure carried by the surface ∂Ω and having the same potential as µ outside Ω̄,
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see for instance [19], [22] for more details about this topic. And in this case, by a classical

approximation technique, one has the following relation:∫
∂Ω
hdσ = ⟨h, µ⟩ ∀h ∈ H(Ω̄) (1.1)

where H(Ω̄) denotes the set of harmonic functions in a neighborhood of Ω̄. And we say that

∂Ω is a quadrature surface with respect to µ if (1.1) is satisfied.

This notion is closely linked with the overdetermined Cauchy elliptic problem. And one

can claim that ∂Ω is a quadrature surface if and only if there is a solution to the following

overdetermined Cauchy problem
−∆uΩ = µ in Ω,

uΩ = 0 on ∂Ω,

−∂uΩ
∂ν⃗ = 1 on ∂Ω.

(1.2)

The above quadrature surface free boundary problem has some physical motivations and

can be related to many areas such as free streamlines, jets, Hele-show flows, electromagnetic

shaping, gravitational problems etc. It has been intensively studied at least during the last

forty years, see for example [33], [15] and the references therein for more details. Among

these works, some authors have established an intimate link between the existence of quadra-

ture surfaces and the solution of free boundary problems governed by overdetermined partial

differential equations, see for instance [17], [32], [31], [13] and references therein.

The quadrature surface problem (1.2) can be tackled by a shape optimization approach when

µ is regular enough, for instance by taking it in L2(Ω), supp(µ) ⊂ Ω. Fore more details see

for instance [3] and [13].

Before proceeding further, let us remind that in optimisation or in the study of minimal

action, one of the essential questions is the characterization of an optimum if it exists. When

one is in a differentiable environment, i.e. if the objective function is differentiable as well as

its constraints, if any, the first derivative and second one (hessian) play a fundamental role.

In finite dimensions, the characterization results are very well known even when we are in

Banach spaces.

On the other hand, when we have to deal with admissible sets of regular openings of

RN , N ≥ 2 containing the optimum to be characterized, the question is to be treated in

a more delicate way. Indeed, if we consider a shape optimization problem where the variable

is a regular open subset of class C2 and in which a boundary value problem of partial differ-

ential equations is posed, there is the computation of the second derivative. Added to this,
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the equivalence of norms is to be handled if any exist. In this paper, we aim at studying

these issues of characterization of critical or optimal domains in the case where the minimum

of the considered shape functional exists, in infinite dimensional Riemannian structures. To

do so, it is crucial to find a space of forms and associated metrics.

Finding a shape space and an associated metric is a challenging task and different ap-

proaches lead to various models. One possible approach is to do as in [25], [24]. These

authors proposed, a survey of various suitable inner products is given, e.g., the curvature

weighted metric and the Sobolev metric. There are various types of metrics on shape spaces,

e.g., inner metrics [4], [24] like the Sobolev metrics, outer metrics [6], [20], [24], metamorphosis

metrics [35], the Wasserstein or Monge-Kantorovic metric on the shape space of probability

measures [2], [7], the Weil-Petersson metric [21], current metrics [14], and metrics based on

elastic deformations [16], [26]. However, it is a challenging task to model both, the shape

space and the associated metric. There does not exist a common shape space or shape metric

suitable for all applications. The suitability of an approach depends on the requirements in

a given situation. In recent works, it has been shown that PDE constrained shape optimiza-

tion problems can be embedded in the framework of optimization on shape spaces. E.g., in

[28], shape optimization is considered as optimization on a Riemannian shape manifold, the

manifold of smooth shapes. Moreover, an inner product, which is called Steklov- Poincaré

metric, for the application of finite element (FE) methods, is proposed in [29].

As pointed out in [27], shape optimization can be viewed as optimization on Riemannian

shape manifolds and the resulting optimization methods can be constructed and analyzed

within this framework. This combines algorithmic ideas from [1] with the Riemannian geo-

metrical point of view established in [4]

In [25], [24], a geometric structure of two-dimensional C∞ shapes was introduced and subse-

quently generalized to shapes in higher dimensions in [23], [4], [5]. Essentially, closed curves

(and closed higher-dimensional surfaces) are identified with mappings of the unit sphere to

any shape under consideration. In two dimensions, this can be naturally motivated by Rie-

mannian mapping theorem. In this work, we focus on two-dimensional shapes as subsets.

And considering [3], [13], we think that it is possible to write our work in high dimensions and

even if Ω is an open set with boundary of a compact N−dimensional Riemannian manifolds

noted M.
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One of our main question is the following:

Is it possible to express the Hessian of a shape functional to get sufficient conditions so

that the critical domain of the functional J assumes its minimum? To answer this question,

we study the positiveness of the quadratic form of the functional J which is related to the

quadrature surface that is nothing but the following free boundary problem
−∆uΩ = f in Ω

uΩ = 0 on ∂Ω

−∂uΩ
∂ν⃗ = k on ∂Ω

k is a positive constant, and f ∈ L2(Ω), suppf ⊂ Ω, ν⃗ is the exterior unit normal vector. The

above quadrature surface can be formulated as the following shape optimization problem:

min
Ω⊂R2

J(Ω)

under the following partial differential equations contraints
−∆uΩ = f in Ω

uΩ = 0 on ∂Ω

where

J(Ω) = −1

2

∫
Ω
|∇uΩ|2dx+

k2

2
|Ω| (1.3)

is a real valued shape differentiable objective function, with |Ω| =
∫
Ω
dx.

In [3], [13], there are all details on existence results of quadrature surface by using shape

optimization tools.

And the second question is the computation problem of the Hessian in the infinite Rie-

mannian framework and how it can be related to the second shape derivative to deduce

qualitative properties when the minimum of a regular enough shape functional exists or

when Ω is a critical point the latter property means, that the first derivative of J(Ω) is equal

to zero.

The paper is organized as follows:

In section 2, we give a brief survey, based on works in [25], [24], about the characterization

of the tangent space in a framework of Riemannian manifolds of infinite dimensions.

Section 3 deals with the optimality condition of first order for the shape optimization and
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the computation of the covariant derivative. The latter plays a key role in our final result.

We shall give a direct way to compute it which appears as a simplified expression.

In section 4, we shall recall some technical but classical computations of shape second de-

rivative and establish a result (stated as a proposition) giving the expression of the quadratic

form associated to the quadrature surface problem.

Section 5 which contains our main contributions, is devoted to the positiveness of the

shape hessian in a Riemannian point of view of infinite dimensions. And, we shall propose a

simple control which allows to get key information on the optimal shape domains when the

latter are strict local minimum or critical points of the considered shape functional.

2. Characterization of tangent space at a point of Be

The aim is to analyze the correlation of the Riemannian geometry on infinite dimensional

maniolds Be with shape optimization.

The authors would like to stress, what follows has been already done in pioneering works,

see [25], [24], [23]. We only reproduce some fundamental steps related to our work.

Let Ω be a simply connected and compact subset of R2 with Ω ̸= ∅ and C∞ boundary ∂Ω.

As is always the case in shape optimization, the boundary of the shape is all that matters.

Thus we can identify the set of all shapes with the set of all those boundaries.

Let Emb(S1,R2) be the set of all smooth embeddings on S1 in the plan R2, its elements

are the injective mappings c : S1 −→ R2. Let Diff(S1) stands for the set of all C∞ diffeo-

morphism on S1 which acts diferentiably on Emb(S1,R2). Let us consider Be as the quotient

Emb(S1,R2)/Diff(S1).

In terms of sets, we have

Be(S1,R2) := { [c] / c ∈ Emb} where [c] := {c′ ∈ Emb / c′ ∼ c}. (2.4)

To characterize the tangent space toBe we start with the characterization of the tangent space

to Emb denoted TcEmb and the tangent space to the orbit of c by Diff(S1) at c denoted

by Tc(Diff(S1).c). Thus the tangent space to Be is then identified with a suplementary

subspace of Tc(Diff(S1).c) in TcEmb.
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Proposition 2.1. Let c ∈ Emb, then the tangent space at c to Emb is given by:

TcEmb = C∞(S1,R2). (2.5)

Proof. Let h ∈ TcEmb, then h is obtained by looking at a path of embeddings which passes

through c. Let c : I×S1 −→ R2 be an embedding path such that c(t, θ) = c(θ)+ th(θ) where

h : S1 −→ R2 is C∞, we have : d
dt |t=0

c(t, θ) = h(θ). Since c(t, θ) is an embedding path then

c(t, θ) is an immersion, thus

TcEmb = Im(T0c(t, θ)) = C∞(S1,R2). (2.6)

□

Proposition 2.2. The tangent space to the orbit of c by Diff(S1), is the subspace of TcEmb

formed by vectors m(θ) of the type cθ(θ) = c
′
(θ) times a function.

Proof. We have Diff(S1).c ⊂ Emb because these are all the bijective reparametrizations of

the same curve c(θ) therefore Tc(Diff(S1).c) ⊂ TcEmb. Let m ∈ Tc(Diff(S1).c) then m

is obtained by looking at a family of parametrizations c(t, θ) := c(ϕ(t, θ)) of the curve c(θ)

where

ϕ(t, .) : S1 −→ S1

is a diffeomorphism of S1 and t is the parameter of the variation of the reparametrization

ϕ(t, s) of S1. We have d
dt |t=0

c(t, θ) = c′(θ) d
dt |t=0

ϕ(0, θ) since, c(t, θ) is a parametrization of

the curve c(θ) so it is an immersion. Thus we have

Tc(Diff(S1).c) = Im(T0c(t, θ)) = c′(θ)
d

dt |t=0
ϕ(0, θ). (2.7)

□

Remark 2.1. The choice of the supplementary must abide by the action of Diff(S1) i.e we

choose a supplementary of Tc(Diff(S1).c) in TcEmb stable by the action of Diff(S1). For

that it suffices to define a metric on Emb for which Diff(S1) acts isometrically and define

the supplementary of Tc(Diff(S1).c) as its orthogonal with respect to this metric.

Definition 2.1. Let G0 be metric invariant by the action of Diff(S1) on the manifold

Emb(S1,R2), defined by the application:

G0 : TcEmb× TcEmb → R

(h,m) 7→
∫
S1

〈
h(θ),m(θ)

〉
|c′(θ)|dθ

where
〈
h(θ),m(θ)

〉
is the ordinary scalar product of h(θ) and m(θ) in R2.
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Proposition 2.3. Let c ∈ Be then TcBe is colinear to the outer unit normal of Ω where Ω is

a simply connected and compact subset of R2 and ν⃗ is the outer unit normal of the domain

Ω . In other words

TcBe ≃ {h | h = αν⃗, α ∈ C∞(S1,R)}.

Proof. From the results shown above the orthogonal of Tc(Diff(S1).c) in TcEmb is the set

of h(θ) in TcEmb which are orthogonal for the metric G0 to all m(θ) = d
dt |t=0

ϕ(0, θ)c′(θ) this

means that h(θ) must be perpendicular to c′(θ). So h(θ) = α(θ)ν⃗(θ) where α(θ) ∈ C∞(S1,R).

Therefore we have

TcBe ≃ {h|h = αν⃗, α ∈ C∞(S1,R)}

where ν⃗ is the outer unit normal of the form Ω defined at the boundary by ∂Ω = c such that

ν⃗(θ) ⊥ c′(θ) for all θ ∈ S1 and c′ defines the circumferential derivative. □

Now let us consider the following terminology:

ds = |cθ|dθ arc length.

Definition 2.2. A Sobolev-type metric on the manifold Be(S1,R2) is map:

GA : TcBe × TcBe → R

(h,m) 7→
∫
S1
(1 +AK2

c (θ))
〈
h(θ),m(θ)

〉
|c′(θ)|dθ

where Kc is the curvature of c and A a positive real.

Remark 2.2. (1) By setting h = αν⃗, m = βν⃗ and by parametrizing c(s) by arc length

we have

GA(h,m) =

∫
∂Ω

(1 +AK2
c (θ))αβds.

(2) If A > 0, GA is a Riemannian metric.

3. Optimality condition of first order and covariant derivative

The shape optimization problem that we have, consists in finding the solution of the

following optimization problem:

min
Ω
J(Ω),

where

J(Ω) = −1

2

∫
Ω
|∇uΩ|2dx+

k2

2
|Ω|
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is a shape functional. We seek the shape derivative associated with the functional J(Ω)

following the direction of the vector field V : R2 → R2, C∞ class :

dJ(Ω)[V ] =

∫
∂Ω

(
k2 −

(
∂uΩ
∂ν⃗

)2
)〈

V, ν⃗
〉
dσ.

If V|∂Ω = αν⃗ we can still write

dJ(Ω)[V ] =

∫
∂Ω

(
k2 −

(
∂uΩ
∂ν⃗

)2
)
αdσ. (3.8)

It should noted that there is a link between the shape derivative of J and the gradient in

Riemannian structures see [27] and [37]. To illustrate our claim, let us consider the Sobolev

metric GA to ease the understanding of the computations. We think that it is quite possible

to generalize this study in higher dimensions and even with other metrics.

Our purpose is to calculate the gradient of J : Be → R then we have :

dJ(Ω)[V ] = GA(gradJ(Ω), V ) (3.9)

if V|∂Ω = h we have

dJc(h) = GA(gradJ(Ω), h)

dJc(h) =

∫
∂Ω

(
1 +AK2

c

)
gradJα.

But from (3.9),

dJc(h) =

∫
∂Ω

(
k2 −

(
∂uΩ
∂ν⃗

)2
)
αdσ

and thus ∫
∂Ω

(
k2 −

(
∂uΩ
∂ν⃗

)2
)
αdσ =

∫
∂Ω

(
1 +AK2

c

)
gradJαdσ

so that

gradJ =
1

1 +AK2
c

(
k2 −

(
∂uΩ
∂ν⃗

)2
)
.

The next step is to compute the explicit form of the covariant derivative ∇hm ∈ TcBe with

h,m ∈ TcBe.

Definition 3.1. Let M be a set. A chart of M is a triplet (U , ψ, E) where U is a subset of

M, E is a Banach space, and ψ is a bijection from U to an open set E. We say that two

charts (U1, ψ1, E1) and (U2, ψ2, E2) are Cr-compatible if:

� ψ1(U1 ∩ U2)(respectively ψ2(U1 ∩ U2)) is an open set in E1 (respectively E2).
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� The map ψ1 ◦ ψ−1
2 (respectively ψ2 ◦ ψ−1

1 ) of ψ2(U1 ∩ U2) in ψ1(U1 ∩ U2) (respectively

ψ1(U1 ∩ U2) in ψ2(U1 ∩ U2) is of class Cr.

A Cr-atlas of M is a set of charts that are two by two Cr-compatible and whose domains

cover M. Two atlases are Cr-equivalent if their union is still a Cr-atlas. A Banach manifold

of class Cr is a set M equipped with a class of equivalence of Cr-atlases.

Definition 3.2. Let M be a real (smooth) Banach manifold and g be a section of the bundle

TM∗ × TM∗ of symmetric bilinear forms on TM. We say that g is a weak Riemannian

metric on M if and only if, for every p ∈ M, gp is a positive definite bilinear map on TpM,

ie. if and only if:

� gp(X,X) ≥ 0 , for all X ∈ TpM,

� gp(X,X) = 0 if and only if X = 0.

Definition 3.3. Let M be a real (smooth) Banach manifold and g be a section of the bundle

TM∗ × TM∗ of symmetric bilinear forms on TM. We say that g is a strongly Riemannian

metric on M if, for every p ∈ M, the injection from TpM to TpM∗ defined by

g̃p :

∣∣∣∣∣∣ TpM −→ TpM∗

X 7→ {iXgp : Y 7→ gp(X,Y )}

induces an isomorphism between TpM and TpM∗.

Proposition 3.1. Given a Banach manifold M equipped with a strongly Riemannian metric

g, there exists a unique linear connection ∇ on the tangent bundle TM∗ preserving g and

having zero torsion. It is called the Levi-Civita connection of g.

For the proof of this proposition, see Proposition A.2.6 in [36].

The following results (Propositions 3.2; 3.3 and Theorem 3.1) have been already established

in a pioneering work, see [27]. We only bring a new proof and additional details in the

computations of the covariant derivative. In the last part of the paper containing our main

contributions, the covariant derivative plays a key role in the study of the positiveness of the

quadratic form. We shall come back to this fact.

Proposition 3.2. Let Ω ⊂ R2 where Ω is a simply connected and compact subset of R2 and be

at least of class C2, and ν⃗ is the outer unit normal of the domain Ω and V,W,Z ∈ C∞(R2,R2)

vector fields which are orthogonal to the boundaries i.e

V|∂Ω = αν⃗
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with α :=
〈
V|∂Ω, ν⃗

〉
,

W|∂Ω = βν⃗

with β :=
〈
W|∂Ω, ν⃗

〉
and

Z|∂Ω = γν⃗

with γ :=
〈
Z|∂Ω, ν⃗

〉
such that V|∂Ω = h := αν⃗, W|∂Ω = m =: βν⃗ and Z|∂Ω = l := γν⃗

belongs to the tangent space of Be. Then the shape derivative h(GA(m, l)) associated with

the Riemannian metric GA can be expressed as follows:

h(GA(m, l)) =

∫
∂Ω

(
2AK3

cαβγ + (1 +AK2
c )

∂β
∂ν⃗ γα

)
ds

+

∫
∂Ω

(
(1 +AK2

c )
∂γ
∂ν⃗βα+Kc(1 +AK2

c )αβγ
)
ds.

Proof. We set

F (ct(θ)) = (1 +AK2
c (θ))

〈
m(θ), l(θ)

〉
,

so that GA(m, l) =

∫
S1
F (ct(θ))|c′t(θ)|dθ. Then we calculate the following expression

h(GA(m, l)) =
d

dt |t=0

(∫
S1
F (ct(θ))|c′t(θ)|dθ

)
[V ],

where ct(θ) denotes a family of (parameterized) curves with c0(θ) = c(θ) and c′t(θ) denotes

the derivative with respect to θ of the curve ct : θ −→ ct(θ). We have

h(GA(m, l)) =

∫
S1

(
∂[(1+AK2

c )βγ]
∂ν⃗ α|c′t(θ)|+

∂(|c′t(θ)|)
∂ν⃗ (1 +AK2

c )βγα)
)
dθ

=

∫
S1

(
2AKc(

∂Kc
∂ν⃗ )αβγ + (1 +AK2

c )
∂β
∂ν⃗ γα+ (1 +AK2

c )
∂γ
∂ν⃗βα

)
dθ

+

∫
S1

∂|c′t(θ)|
∂ν⃗

(1 +AK2
c )βγαdθ.

Now let us calculate ∂Kc
∂ν⃗ . We have

∂Kc

∂ν⃗
=

〈
ν⃗, cθ

〉
|cθ|2

Kθ +

〈
ν⃗, icθ

〉
|cθ|

K2 +
1

|cθ|

(
1

|cθ|

(〈
ν⃗, icθ

〉
|cθ|

)
θ

)
θ

.

Then we have
〈
ν⃗, cθ

〉
= 0 because ν⃗ ⊥ cθ and moreover,〈

ν⃗, icθ
〉

|cθ|
=

〈
ν⃗,
icθ
|cθ|
〉

〈
ν⃗, icθ

〉
|cθ|

=
〈
ν⃗, ν⃗
〉

〈
ν⃗, icθ

〉
|cθ|

= ∥ν⃗∥2 = 1.
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Hence, we obtain that:

∂Kc

∂ν⃗
= K2

c +
1

|cθ|

(
1

|cθ|

(〈
ν⃗, icθ

〉
|cθ|

)
θ

)
θ

.

Let us compute step by step the above last term in the right hand side.

First, we have

(〈
ν⃗, icθ

〉
|cθ|

)
θ

=
∂

∂θ

(〈
ν⃗, icθ

〉
|cθ|

)

=
∂
∂θ

〈
ν⃗, icθ

〉
|cθ| − ∂|cθ|

∂θ

〈
ν⃗, icθ

〉
|cθ|2

=
∂
∂θ

〈
ν⃗, icθ

〉
|cθ|

|cθ|2

=
∂
∂θ

〈
ν⃗, icθ

〉
|cθ|

(〈
ν⃗, icθ

〉
|cθ|

)
θ

=

〈
∂ν⃗
∂θ , icθ

〉
+
〈
ν⃗, i∂cθ∂θ

〉
|cθ|

=

〈
ν⃗ ′(θ), icθ

〉
+
〈
ν⃗(θ), icθθ

〉
|cθ|

=

〈
ν⃗ ′(θ), icθ

〉
|cθ|

+

〈
ν⃗(θ), icθθ

〉
|cθ|

=
〈
ν⃗ ′(θ),

icθ
|cθ|
〉
+

〈
ν⃗(θ), icθθ

〉
|cθ|

=
〈
ν⃗ ′(θ), ν⃗(θ)

〉
+

〈
ν⃗(θ), icθθ

〉
|cθ|

.

Note that ∥ν⃗∥2 = 1 which is nothing
〈
ν⃗, ν⃗
〉
= 1. Therefore, by differentiation, we get

〈
ν⃗ ′(θ), ν⃗(θ)

〉
+
〈
ν⃗(θ), ν⃗ ′(θ)

〉
= 0

2
〈
ν⃗ ′(θ), ν⃗(θ)

〉
= 0〈

ν⃗ ′(θ), ν⃗(θ)
〉

= 0.
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Indeed, proceeding further the computation, we have(〈
ν⃗, icθ

〉
|cθ|

)
θ

=

〈
ν⃗(θ), icθθ

〉
|cθ|

=
〈
ν⃗(θ),

icθθ
|cθ|

〉
=

〈
ν⃗(θ),

−Kc|cθ|cθ
|cθ|

〉
=

〈
ν⃗(θ),−Kccθ

〉
= −Kc

〈
ν⃗(θ), cθ

〉
= 0.

Finally, from all the above steps, we have 1
|cθ|

(
1

|cθ|

(〈
ν⃗,icθ

〉
|cθ|

)
θ

)
θ

= 0 and we get

∂Kc

∂ν⃗
= K2

c .

Therefore, we have

h(GA(m, l)) =

∫
∂Ω

(
2AKc(

∂Kc
∂ν⃗ )αβγ + (1 +AK2

c )
∂β
∂ν⃗ γα+ (1 +AK2

c )
∂γ
∂ν⃗βα

)
dθ

+

∫
∂Ω

∂|c′t(θ)|
∂ν⃗

(1 +AK2
c )βγαdθ

=

∫
∂Ω

(
2AKc ×K2

cαβγ + (1 +AK2
c )

∂β
∂ν⃗ γα+ (1 +AK2

c )
∂γ
∂ν⃗βα

)
dθ

+

∫
∂Ω

∂|c′t(θ)|
∂ν⃗

(1 +AK2
c )βγαdθ. (3.10)

Let us calculate now the following expression

∂(|c′t(θ)|)
∂ν⃗

.

To do this we parametrize c(θ) by arc length i.e |c′(θ)| = 1. Since

〈
c′(θ), c′(θ)

〉
= 1

and differentiating it, we have 〈
c′′(θ), c′(θ)

〉
= 0.

Then c′′(θ) = cθθ(θ) is proportional to ν⃗(s) so c
′′(θ) = Kc(θ)ν⃗(θ) (this is the definition of the

curvature of the curve c).
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Let us compute now d
dt(|c

′
t(θ)|) at t = 0, where

|c′t(θ)| = | d
dθ

(c(θ) + tν⃗(θ))|

= |c′(θ) + tν⃗ ′(θ)|

= (|c′(θ)|2 + t2|ν⃗ ′(θ)|2 + 2t
〈
c′(θ), ν⃗ ′(θ)

〉
)
1
2 (3.11)

From the Taylor’s expansion of the previous expression in t, we see that

d

dt |t=0
|c′t(θ)| =

〈
c′(θ), ν⃗ ′(θ)

〉
and since 〈

c′(θ), ν⃗(θ)
〉
= 0

by differentiating we have 〈
c′(θ), ν⃗ ′(θ)

〉
= −

〈
c′′(θ), ν⃗(θ)

〉
= Kc,

and hence d
dt(|c

′
t(θ)|) = Kc.

One can conclude that

h(GA(m, l)) =

∫
∂Ω

(
2AK3

cαβγ + (1 +AK2
c )

∂β
∂ν⃗ γα

)
ds

+

∫
∂Ω

(
(1 +AK2

c )
∂γ
∂ν⃗βα+Kc(1 +AK2

c )αβγ
)
ds.

□

Proposition 3.3. Let Ω ⊂ R2 where Ω is a simply connected and compact subset of R2 and be

at least of class C2, and ν⃗ is the outer unit normal of the domain Ω and V,W,Z ∈ C∞(R2,R2)

vector fields which are orthogonal to the boundaries i.e

V|∂Ω = αν⃗

with α :=
〈
V|∂Ω, ν⃗

〉
,

W|∂Ω = βν⃗

with β :=
〈
W|∂Ω, ν⃗

〉
and

Z|∂Ω = γν⃗

with γ :=
〈
Z|∂Ω, ν⃗

〉
such that V|∂Ω = h := αν⃗, W|∂Ω = m =: βν⃗ and Z|∂Ω = l := γν⃗ belongs

to the tangent space of Be. Then the expression GA(∇hm, l) + GA(m,∇hl) associated with

the Riemannian metric GA for all l ∈ TCBe, can be expressed as follows:

GA(∇hm, l) +GA(m,∇hl) =

∫
∂Ω

(1 +AK2
c ) (∇VWγ + β∇V Z) ds.
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Proof. By using the definition of the Riemannian metric GA we have

GA(∇hm, l) =

∫
∂Ω

(1 +AK2
c )∇hmγ

=

∫
∂Ω

(1 +AK2
c )∇VWγ (3.12)

and

GA(m,∇hl) =

∫
∂Ω

(1 +AK2
c )β∇hl

=

∫
∂Ω

(1 +AK2
c )β∇V Z. (3.13)

Therefore, by adding up the equations (3.12) and (3.13) we have

GA(∇hm, l) +GA(m,∇hl) =

∫
∂Ω

(1 +AK2
c )∇VWγ +

∫
∂Ω

(1 +AK2
c )β∇V Z

=

∫
∂Ω

(1 +AK2
c ) (∇VWγ + β∇V Z) ds.

□

Remark 3.1. We would like to find a linear connection that preserves the Riemannian metric

GA and if such a connection exists, it is such that hGA(m, l) = GA(∇hm, l) + GA(m,∇hl).

By using the Propositions 3.2 and 3.3 we have∫
∂Ω

(1 +AK2
c ) (∇VWγ + β∇V Z) ds =

∫
∂Ω

(
2AK3

cαβγ + (1 +AK2
c )

∂β
∂ν⃗ γα

)
ds

+

∫
∂Ω

(
(1 +AK2

c )
∂γ
∂ν⃗βα+Kcαβγ +AK3

cαβγ
)
ds.

=

∫
∂Ω

(
3AK3

c +Kc

)
αβγ + (1 +AK2

c )
∂β

∂ν⃗
γα

+ (1 +AK2
c )
∂γ

∂ν⃗
βαds.

From which, we get a simplified expression:

∇VWγ + β∇V Z =

(
3AK3

c +Kc

1 +AK2
c

)
αβγ +

∂β

∂ν
γα+

∂γ

∂ν
βα

∇VWγ =

(
3AK3

c +Kc

1 +AK2
c

)
αβγ +

∂β

∂ν⃗
γα+

∂γ

∂ν⃗
βα− β∇V Z.

By pointing out that

∇V Z =
∂γ

∂ν⃗
α,
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we have

∇VWγ =

(
3AK3

c +Kc

1 +AK2
c

)
αβγ +

∂β

∂ν⃗
γα+ β

∂γ

∂ν⃗
α− β

∂γ

∂ν⃗
α

=

(
3AK3

c +Kc

1 +AK2
c

)
αβγ +

∂β

∂ν⃗
γα.

(3.14)

Finally, we have

∇VW =

(
3AK3

c +Kc

1 +AK2
c

)
αβ +

∂β

∂ν⃗
α. (3.15)

Now let us verify that the connection ∇ is linear

� Let V,W,Z ∈ C∞(R2,R2) be vector fields which are orthogonal to the boundary of

Ω, we have

∇V (W + Z) := ∇h(m+ l) =
∂(β + γ)

∂ν⃗
α+

(
3AK3

c +Kc

1 +AK2
c

)
α(β + γ)

=
〈
DV (W + Z), ν⃗

〉
+

(
3AK3

c +Kc

1 +AK2
c

)〈
V, ν⃗

〉〈
W + Z, ν⃗

〉
=

〈
DVW, ν⃗

〉
+
〈
DV Z, ν⃗

〉
+

(
3AK3

c +Kc

1 +AK2
c

)〈
V, ν⃗

〉〈
W, ν⃗

〉
+

(
3AK3

c +Kc

1 +AK2
c

)〈
V, ν⃗

〉〈
Z, ν⃗

〉
=

(
3AK3

c +Kc

1 +AK2
c

)
αβ +

∂β

∂ν⃗
α+

(
3AK3

c +Kc

1 +AK2
c

)
αγ +

∂γ

∂ν⃗
α

∇V (W + Z) = ∇VW +∇V Z. (3.16)

� Let f be a scalar field and V,W ∈ C∞(R2,R2) be vector fields which are orthogonal

to the boundary of Ω, we have

∇fVW = ∇fhm

∇fVW = f
∂β

∂ν⃗
α

∇fVW = f∇VW. (3.17)

From the equations (3.16) and (3.17) one can conclude that ∇ is linear.

Remark 3.2. The map

ξ :

∣∣∣∣∣∣ TcBe −→ TcB
∗
e

h 7→ {ihGA : m 7→ GA(h,m)}
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is linear, injective and also surjective. Indeed given GA as defined above, for any y ∈ TcB
∗
e ,

we want to find a vector h ∈ TcBe such that

ξ(h) = y

⇐⇒ ihG
A = y

⇐⇒ ihG
A(m) = y(m), ∀m ∈ TcBe

⇐⇒ GA(h,m) = y(m), ∀m ∈ TcBe. (3.18)

From the equation (3.18) we can write

GA(h,m) = y(m) =

∫
∂Ω

(1 +AK2
c ).

y(m)

|∂Ω|(1 +AK2
c )
ds

GA(h,m) =

∫
∂Ω

(1 +AK2
c ).

1

1 +AK2
c

.
1

|∂Ω|
yds (3.19)

Using the definition above, we have

GA(h,m) =

∫
∂Ω

(1 +AK2
c )
〈
h,m

〉
ds. (3.20)

Then from the equations (3.19) and (3.20) we can show that

〈
h,m

〉
=

y(m)

|∂Ω|(1 +AK2
c )

∀m ∈ TcBe. (3.21)

Does there exist a h = αν⃗ such that

〈
h,m

〉
=

y(m)

|∂Ω|(1 +AK2
c )

∀m ∈ TcBe with m := βν⃗ ? (3.22)

One can show that y(m) is linear with respect to m. Indeed y(m) = GA(h,m) and GA is

linear with m. Since y(m) ∈ R then we can write y(m) = k.m for k ∈ TcBe with k := γν⃗

and γ ∈ C∞(S1,R). Therefore from (3.22) we have

αβ =
y(βν⃗)

|∂Ω|(1 +AK2
c )

∀β ∈ C∞(S1,R) (3.23)

αβ =
k.βν⃗

|∂Ω|(1 +AK2
c )

(3.24)

αβ =
γβ

|∂Ω|(1 +AK2
c )

(3.25)

(3.26)

therefore

α =
γ

|∂Ω|(1 +AK2
c )
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then

h =
γ

|∂Ω|(1 +AK2
c )∫

∂Ω
ds = |∂Ω|.

Now we can conclude that for

h =
γ

|∂Ω|(1 +AK2
c )

then

∀y ∈ TcB
∗
e ∃h ∈ TcBe : ξ(h) = y.

Therefore the map ξ induces an isomorphism between TcBe and TcB
∗
e . Consequently, from the

Definition 3.3 we can check that GA is a strongly Riemannian metric and then by using the

Proposition 3.1 one can deduce that ∇ exists, it is unique and coincides with the Levi-Civita

connection.

And then we are now able to claim the following theorem.

Theorem 3.1. Let Ω ⊂ R2 where Ω is a simply connected and compact subset of R2 and be

at least of class C2, and ν⃗ is the outer unit normal of the domain Ω and V,W ∈ C∞(R2,R2)

vector fields which are orthogonal to the boundaries i.e

V|∂Ω = αν⃗

with α :=
〈
V|∂Ω, ν⃗

〉
and

W|∂Ω = βν⃗

with β :=
〈
W|∂Ω, ν⃗

〉
such that V|∂Ω = h := αν⃗, W|∂Ω = m =: βν⃗ belongs to the tangent

space of Be. Then the covariant derivative associated with the Riemannian metric GA can

be expressed as follows:

∇VW : = ∇hm =
∂β

∂ν⃗
α+

(
3AK3

c +Kc

1 +AK2
c

)
αβ

=
〈
DVW, ν⃗

〉
+

(
3AK3

c +Kc

1 +AK2
c

)〈
V, ν⃗

〉〈
W, ν⃗

〉
where DVW is the directional derivative of the vector field W in the direction V .

Proof. It is a straight consequence of the above propositions and remarks. □
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Remark 3.3. It is quite possible to begin the proof of the above theorem by the application of

shape calculus rules for volume and boundary functionals as in [12], [34], [18] on the following

functional ∫
∂Ω

(1 +AK2
c )αβdσ.

The remaining computations are mostly similar. We only underline that, at the end, it is

necessary to see that the local covariant derivative is ∇XxY = d
dt|t=0

(Y (x + tX(x))) where

Y = X = ν⃗ and Dν⃗ ν⃗ = 0 since |ν⃗|2 = 1, Dν⃗ being the Jacobian matrix.

4. Sufficient condition for the minimality of a shape functional

In this section, assuming at first that there is at least one critical point, we shall first

present the sufficient condition on the existence of a local minimum for a functional J(Ω)

given as follows:

J(Ω) =

∫
Ω
f0(uΩ, grad(uΩ)) (4.27)

where f0 is a function of R × Rn that we suppose to be smooth and uΩ denotes a smooth

solution of a boundary value problem.

And in the second part, in the case where J(Ω) = −1
2

∫
Ω
|grad(uΩ)|2dx+

k2

2
|Ω|, we compute

the second shape derivative.

The fundamental question is then to study the existence of the local strict minima of this

functional under possible constraints that Ω is a critical point. That means that the first

order derivative with respect to the domain is equal to zero at the domain Ω. We shall ex-

amine, for that, how this solution uΩ varies when its domain of definition Ω moves.

Let us recall the classical method of studying a critical point. Let (B, ∥ . ∥1) be a Banach

space and let E : (B, ∥ . ∥1) −→ R be a function of class C2 whose differential Df vanishes

at 0. The Taylor-Young formula is then written as

E(u) = E(0) +D2 E(0) . (u, u) + o(||u||21). (4.28)

In particular, if the Hessian form D2E(0) is coercive in the norm ∥ . ∥1, then the critical point

0 is a strict local minimum of E. The fundamental difficulty in the study of critical forms is

caused by the appearance of a second norm ∥ . ∥2 finer than ∥ . ∥1 (i.e ∥ . ∥2 ≤ C∥ . ∥1).

The Hessian form, is not in general, coercive for the norm ∥ . ∥1 but it is for the standard
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norm ∥ . ∥2. If these norms are not equivalent, which is generally the case, concluding that

the minimum is strict is impossible, even locally for the strong norm. It is quite possible

to give several examples. But let us reproduce a simple example of such a situation on the

space H1
0 (0, 1) that was presented in the thesis [8]. Let us consider the functional E defined

by

E(u) = ∥u∥2L2(0,1) − ∥u∥4H1
0 (0,1)

.

We can check that E is twice differentiable on H1
0 (0, 1). Further more, one has at 0: E′(0) = 0

E′′(0).(h, h) = 2∥h∥2L2(0,1).

For each direction, we find that 0 is a strictly local minimum. Indeed, for all nonzero

u0 ∈ H1
0 (0, 1) and for all t ∈ R, we have

E(tu0) = t2∥u0∥2L2(0,1) − t4∥u0∥4H1
0 (0,1))

> 0 if t2 <
∥u0∥2L2(0,1)

∥u0∥4H1
0 (0,1)

.

However, 0 is not a local minimum even for the H1
0 norm. Indeed, there is no r > 0 such

that

∥u∥H1
0 (0,1)

< r =⇒ E(u) > E(0) = 0 i.e ∥u∥2L2(0,1) > ∥u∥4H1
0 (0,1)

,

since we can always build a sequence in H1
0 (0, 1) such that ∥un∥H1

0 (0,1)
= r/2,

∥un∥L2(0,1) −→ 0 when n −→ +∞.

To solve this problem, we will use the Taylor’s formula with an integral remainder, instead

of (4.28) i.e

E(u)− E(0) =

∫ 1

0
(1− t) E′′(tu)(u, u) dt. (4.29)

This formula allows to express exactly the difference in energy between a critical form Ω0

and a neighboring form Ω via an integral term that we can carefully estimate thanks to the

study of the variations of the Hessian.

Theorem 4.1. Let f0 : R × RN −→ R, (s, v) 7−→ f0(s, v) be a function of class C3 and

f a function in C0,γ(RN ,R), γ ∈ (0, 1). Let L0 = div(Agrad(.)) be strictly and uniformly

elliptical operator with A in C2(RN , MN (RN )). Let E be the defined shape functional on the

class O of open class C2,γ as

J(Ω) =

∫
Ω
f0(uΩ, grad(uΩ)),
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where MN (RN ) stands for the space of square matrix of order N and uΩ is the solution of

the homogeneous Dirichlet problem  L0u = f in Ω,

u = 0 on ∂Ω.

Let Ω0 ∈ O, then, there exist a real η0 > 0 and an increasing function ω : (0, η0] −→ (0,+∞)

with lim
r↘0

ω(r) = 0, which depend only on Ω0, L0, f0 and f, such that for all η ∈ (0, η0] and

for all θ ∈ C2,α(RN , RN ) satisfying

∥θ − IdRN ∥2,α ≤ η,

we have the following estimate valid for all t in [0, 1],∣∣∣∣ d2dt2 J(Ωt)−
d2

dt2 |t=0
J(Ωt)

∣∣∣∣ ≤ ω(η)∥ < V, ν⃗ > ∥2
H1/2(∂Ω0)

(4.30)

where Ωt = Φt(Ω0), t ∈ [0, 1] stands for the flow related to the vector field V.

This is exactly the Theorem 1 in [9] and for its proof the reader is invited to see this paper.

In the case where Ω0 is a critical point for the functional J, to show that it is a strict

local minimum, we have to study the positiveness of a quadratic form which we are going to

denote by Q . This quadratic form is obtained by computing the second derivative of J with

respect to the domain. So before proceeding, we need some hypothesis ;

let us suppose that:

• (i) - Ω is a C2- regular open domain.

• (ii) - V (x; t) = α(x)ν⃗(x), α ∈ H
1
2 (∂Ω), ∀ t ∈ [0, ϵ[.

In [10], (see also [9], [8]), the authors showed that it is not sufficient to prove that the qua-

dratic form is positive to claim that: a critical shape is a minimum. In fact most of the time

people use the Taylor Young formula to study the positiveness of the quadratic form.

For t ∈ [0, ϵ[, j(t) := J(Ωt) = J(Ω) + tdJ(Ω, V ) + 1
2 t

2d2J(Ω, V, V ) + o(t2).

The quantity o(t2) is expressed with the norm of C2. The H
1
2 (∂Ω) norm appears in the

expression of d2J(Ω, V, V ). And these two norms are not equivalent. The quantity o(t2) is

not smaller than ||V ||
H

1
2 (∂Ω)

, see the example in [10]. Then such an argument does not insure

that the critical point is a local strict minimum.

In our study, we shall see that the main result in [10] can be satisfied in a simple way thanks

to the hessian obtained via the Sobolev metric GA in which the norm of H1/2(∂Ω) appears
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directly. And this overcomes the clasical issue. In fact the study of the sign of

∫
∂Ω
Hdσ

becomes the only control from which one can get information on the optimal domain and

then on the optimal shape.

Proposition 4.1.

Let Ω be a critical point for the functional J, then

Q(α) = d2J(Ω;V ;V )

= −(N − 1)

∫
∂Ω
Hα2dσ + k2

∫
Ω
|grad(Λ)|2dx

= −(N − 1)k2
∫
∂Ω
Hα2dσ + k2

∫
∂Ω
αLαdσ,

where Λ is a solution of the following boundary value problem −∆Λ = 0 in Ω

Λ = α on ∂Ω.
(4.31)

H is the mean curvature of ∂Ω and L is a pseudo differential operator which is known as

the Steklov-Poincaré or capacity or Dirichlet to Neumann(see e.g [11]) operator, defined by

Lα =
∂Λ

∂ν⃗
.

Proof. We use the definition of the derivative with respect to the domain and we apply it to

dJ(Ω, V ).

Then we get

2Q(α) = 2d2J(Ω, V, V )

=

∫
Ω
(div((k2 − |grad(u)|2)V (x, 0)))′dx+

∫
Ω
div(V (x, 0)div((k2 − |grad(u)|2)V (x, 0)))dx

2Q(α) =

[∫
∂Ω

−2grad(u)grad(u′)V (x, 0).ν⃗ + div((k2 − |grad(u)|2)V (x, 0))V (x, 0).ν⃗

]
dσ.

Since Ω is solution of the quadradure surface problem then −∂u
∂ν⃗

= k on ∂Ω.

By assumption, ∂Ω is of C2 class and since u = 0 on ∂Ω,

we have

grad(u) =
∂u

∂ν⃗
ν⃗ = −kν⃗. Hence

2Q(α) =

[∫
∂Ω

2kgrad(u′).ν⃗V (x, 0).ν⃗ + div((k2 − |grad(u)|2)V (x, 0))V (x, 0).ν⃗

]
dσ.
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A classical calculus in shape optimization leads to u′ = −∂u
∂ν⃗
V.ν⃗ on ∂Ω.

Let us recall again that −∂u
∂ν⃗

= k on ∂Ω and V.ν⃗ = α. Then, we have u′ = kα on ∂Ω and

ν⃗grad(u′) =
∂u′

∂ν⃗
= k

∂α

∂ν⃗
= kLα,

where L is a pseudo differential operator, defined by Lα =
∂Λ

∂ν⃗
and such that −∆Λ = 0 in Ω

Λ = α on ∂Ω,
(4.32)

Λ is the extension of α in Ω.

Hence

2Q(α) =

∫
∂Ω

(2k2αLα− div((|grad(u)|2 − k2)α.ν⃗)α)dσ. (4.33)

Let us compute now div((|grad(u)|2−k2)α.ν⃗) on ∂Ω. Since |grad(u)| = k on ∂Ω, we have

div((|grad(u)|2 − k2)α.ν⃗) = αgrad(|grad(u)|2 − k2).ν⃗ = αgrad(|grad(u)|2).ν⃗.

Since we have supposed that Ω of class C2, locally, ∂Ω can be described by a curve φ such

that xN = φ(x′), x′ ∈ RN−1 and Dφ(x′) = 0. Here, Dφ(x′) is the Jacobian matrix of φ.

Let us set x0 = (x′, xN ) = (x′, φ(x′)) ∈ ∂Ω then we have u(x0) = 0.

By differentiating with respect to sj for all j ∈ {1, · · · , N − 1}, we have

∂u(x0)

∂sj
+
∂φ (x′)

∂sj

∂u (x0)

∂ν⃗
= 0,

since
∂φ(x′)

∂sj
= 0, we get

∂u(x0)

∂sj
= 0.

Starting from the following equality

∂u(x0)

∂sj
+
∂φ(x′)

∂sj

∂u(x0)

∂ν⃗
= 0, (4.34)

and by differentiating it with respect to si for all i ∈ {1, · · · , N − 1}, we have

∂2u(x0)

∂si ∂sj
+
∂φ(x′)

∂si

∂2u(x0)

∂ν⃗ ∂sj
+
∂2φ(x′)

∂si ∂sj

∂u(x0)

∂ν⃗

+
∂φ(x′)

∂sj

∂2u(x0)

∂si ∂ν⃗
+
∂φ(x′)

∂sj

∂φ(x′)

∂si

∂2u(x0)

∂ν⃗2
= 0.

Note that u(x0) = 0 and
∂u(x0)

∂sj
= 0 ∀j ∈ {1, · · · , N − 1} and summing over the indices i, j,

we have
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N−1∑
j=1

∂2u(x0)

∂s2j
+ (N − 1) H

∂u(x0)

∂ν⃗
= 0. (4.35)

Since
∂u(x0)

∂si
= 0 ∀i ∈ {1, · · · , N − 1}, we have also

grad(|grad(u)|2(x0)).ν⃗ = ∂
∂ν⃗

[N−1∑
i=1

(
∂u(x0)

∂si

)2

+

(
∂u(x0)

∂ν⃗

)2]
= 2

∂u(x0)

∂ν⃗

∂2u(x0)

∂ν⃗2
.

In addition, we can remark that:

∂2u(x0)

∂ν⃗2
= −

N−1∑
i=1

∂2u(x0)

∂s2i
− f on ∂Ω.

Therefore, we have

grad(|grad(u)|2(x0)).ν⃗ = 2
∂u(x0)

∂ν⃗

(
−

N−1∑
i=1

∂2u(x0)

∂s2i
− f

)

= 2
∂u(x0)

∂ν⃗

(
(N − 1) H

∂u(x0)

∂ν⃗
− f

)
.

When the support of the function f is in Ω, then f = 0 on ∂Ω.

Finally we have

2Q(α) =

∫
∂Ω

2k2αLα− 2(N − 1)Hα2

(
∂u(x0)

∂ν⃗

)2

dσ

=

∫
∂Ω

2k2αLα− 2k2(N − 1)Hα2dσ. (4.36)

And by the Green’s formula we get∫
∂Ω
αLαdσ =

∫
Ω
|grad(Λ)|2dx. (4.37)

□

5. Positiveness of the quadratic form in the infinite Riemannian point of

view

Definition 5.1. Let J : Ω → R be an functional. One defines the hessian Riemannian shape

as follows:

HessJ(Ω)[V ] := ∇V gradJ

where ∇V denotes the derivative following the vector field V .

Theorem 5.1. The hessian Riemannian shape defined by the Riemannian metric GA verifies

the following condition:

GA(HessJ(Ω)[V ],W ) = d(dJ(Ω)[W ])[V ]− dJ(Ω)[∇VW ].
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Proof. Our purpose is to show that

GA(HessJ(Ω)[V ],W ) = d(dJ(Ω)[W ])[V ]− dJ(Ω)[∇VW ].

So let us use the compatibility of the metric GA with the Levi-Civita connection. We have

V.GA(gradJ,W ) = GA(gradJ,∇VW ) +GA(∇V gradJ,W ),

GA(∇V gradJ,W ) = V.GA(gradJ,W )−GA(gradJ,∇VW ).

Since GA(HessJ(Ω)[V ],W ) = GA(∇V gradJ,W ), we have

GA(HessJ(Ω)[V ],W ) = V.GA(gradJ,W )−GA(gradJ,∇VW ),

GA(HessJ(Ω)[V ],W ) = V.(WJ)− (∇VW ).J),

GA(HessJ(Ω)[V ],W ) = d(dJ(Ω)[W ])[V ]− dJ(Ω)[∇VW ]

where V,W ∈ C∞(R2,R2) are vector fields normal to the boundary ∂Ω and d(dJ(Ω)[W ])[V ]

defines the standard Hessian shape. □

Remark 5.1. In our quadrature surface case, for W = mν⃗ and V = hν⃗, we have

dJ(Ω)[V ] =

∫
∂Ω

(
k2 −

(
∂uΩ
∂ν⃗

)2
)
αdσ

and then,

d (dJ(Ω)[W ]) [V ] = d

(∫
∂Ω

(
k2 −

(
∂uΩ
∂ν⃗

)2
)
mdσ

)
[V ].

Setting

ψ := k2 −
(
∂uΩ
∂ν⃗

)2

,

then

ψt := k2 −
(
∂uΩt

∂ν⃗

)2

,

we have

d (dJ(Ω)[W ]) [V ] = d

(∫
∂Ωt

ψtmdσ

)
[h]. (5.38)

This is nothing but

d (dJ(Ω)[W ]) [V ] =

∫
∂Ω

∂ψt

∂t |t=0
mdσ +

∫
∂Ω

∂(ψm)

∂ν⃗
hdσ +

∫
∂Ω
Kcψmhdσ

=

∫
∂Ω

[
∂ψt

∂t |t=0
m+

(
∂ψ

∂ν⃗
+Kcψ

)
mh+ ψ

∂m

∂ν⃗
h

]
dσ.
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Let us compute

∂ψt

∂t |t=0
m =

∂

[
k2 −

(
∂uΩt
∂ν⃗t

)2]
∂t |t=0

m,

∂ψt

∂t |t=0
m = −2m

[
∂(grad(uΩt)).ν⃗

∂t |t=0
+D2uΩV.ν⃗ + grad(uΩ).

(
∂ν⃗t
∂t |t=0

+Dν⃗V

)]
,

∂ψt

∂t |t=0
m = −2m

[
grad(u′Ω).ν⃗ +D2uΩV.ν⃗ + grad(uΩ).

(
∂ν⃗t
∂t |t=0

+Dν⃗V

)]
,

(5.39)

where D2uΩ is the hessian matrix and Dν⃗ the jacobian matrix of ν⃗ .

Let us calculate now the following expression: ∂ν⃗t
∂t |t=0

.

We have

∂ν⃗t
∂t |t=0

= −gradΓ(V.ν⃗)− (Dν⃗0 .ν⃗)V.ν⃗ on Γ,

where gradΓ is the tangential gradient, Γ = ∂Ω and ν⃗0 = ν⃗ hence

∂ν⃗t
∂t |t=0

= −gradΓ(V.ν⃗)− (Dν⃗ .ν⃗)V.ν⃗ on Γ.

Since Dν⃗ .ν⃗ ≡ 0, then

∂ν⃗t
∂t |t=0

= −gradΓ(V.ν⃗) on Γ.

So

∂ψt

∂t |t=0
m = −2m

[
grad(u′Ω).ν⃗ +D2uΩV.ν⃗ + grad(uΩ). (−gradΓ(V.ν⃗) +Dν⃗ .V )

]
.

And finally, we get

d (dJ(Ω)[W ]) [V ] =

∫
∂Ω

[
− 2m

(
grad(u′Ω) · ν⃗ +D2uΩV · ν⃗

+ grad(uΩ) ·
(
− gradΓ(V · ν⃗) +Dν⃗V

))
+

(
∂ψ

∂ν⃗
+Kcψ

)
mh+ ψ

∂m

∂ν⃗
h

]
dσ,

d (dJ(Ω)[W ]) [V ] =

∫
∂Ω

[
− 2
〈
W, ν⃗

〉(
grad(u′Ω) · ν⃗ +D2uΩV · ν⃗

+ grad(uΩ) ·
(
− gradΓ(V · ν⃗) +Dν⃗V

))
+

(
∂ψ

∂ν⃗
+Kcψ

)〈
W, ν⃗

〉〈
V, ν⃗

〉
+ ψ

〈
DVW, ν⃗

〉]
dσ.



INT. J. MAPS MATH. (2025) 8(1):2-34 / SHAPE STABILITY OF A QUADRATURE SURFACE ... 27

On the one hand, having the following Riemannian hessian formula

GA (HessJ(Ω)[V ],W ) = d (dJ(Ω)[W ]) [V ]− dJ(Ω)[∇VW ] (5.40)

it is possible to bring additional details on its computation.

Proposition 5.1. We have

GA(HessJ(Ω)[V ],W ) =

∫
∂Ω

[
−2
〈
W, ν⃗

〉 (
grad

(
u′Ω
)
.ν⃗ +D2uΩV.ν⃗ + grad (uΩ) . (−gradΓ(V.ν⃗)

+ Dν⃗V ))] dσ

+

∫
∂Ω

[
∂

∂ν⃗

(
k2 −

(
∂uΩ
∂ν⃗

)2
)

+Kc

(
k2 −

(
∂uΩ
∂ν⃗

)2
)

− 3AK3
c +Kc

1 +AK2
c

(
k2 −

(
∂uΩ
∂ν⃗

)2
)]〈

V, ν⃗
〉〈
W, ν⃗

〉
dσ. (5.41)

Proof.

GA (HessJ(Ω)[V ],W ) =

∫
∂Ω

[
−2
〈
W, ν⃗

〉(
grad(u′Ω).ν⃗ +D2uΩV.ν⃗ + grad(uΩ). (−gradΓ(V.ν⃗) +Dν⃗V )

)
+

(
∂ψ

∂ν⃗
+Kcψ

)〈
W, ν⃗

〉〈
V, ν⃗

〉
+ ψ

〈
DVW, ν⃗

〉]
dσ

−
∫
∂Ω
ψ
〈
∇VW, ν⃗

〉
dσ,

=

∫
∂Ω

[
−2
〈
W, ν⃗

〉(
grad(u′Ω).ν⃗ +D2uΩV.ν⃗ + grad(uΩ). (−gradΓ(V.ν⃗) +Dν⃗V )

)
+

(
∂ψ

∂ν⃗
+Kcψ

)〈
W, ν⃗

〉〈
V, ν⃗

〉
+ ψ

〈
DVW, ν⃗

〉]
dσ

−
∫
∂Ω
ψ

[〈
DVW, ν⃗

〉
+

(
3AK3

c +Kc

1 +AK2
c

)〈
V, ν⃗

〉〈
W, ν⃗

〉]
dσ,

=

∫
∂Ω

[
−2
〈
W, ν⃗

〉 (
grad

(
u′Ω
)
.ν⃗ +D2uΩV.ν⃗ + grad (uΩ) . (−gradΓ (V.ν⃗)

+ Dν⃗V ))] dσ

+

∫
∂Ω

[
∂ψ

∂ν⃗
+Kcψ − ψKc

(
3AK2

c + 1

1 +AK2
c

)] 〈
V, ν⃗

〉〈
W, ν⃗

〉
dσ.

Replacing ψ by its expression, we have

GA(HessJ(Ω)[V ],W ) =

∫
∂Ω

[
−2
〈
W, ν⃗

〉 (
grad

(
u′Ω
)
.ν⃗ +D2uΩV.ν⃗ + grad (uΩ) . (−gradΓ (V.ν⃗)

+ Dν⃗V ))] dσ

+

∫
∂Ω

[
∂

∂ν⃗

(
k2 −

(
∂uΩ
∂ν⃗

)2
)

+Kc

(
k2 −

(
∂uΩ
∂ν⃗

)2
)

− 3AK3
c +Kc

1 +AK2
c

(
k2 −

(
∂uΩ
∂ν⃗

)2
)]〈

V, ν⃗
〉〈
W, ν⃗

〉
dσ. (5.42)
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□

On the other hand, let us compute GA(HessJ(Ω)[V ],W ) by using directly the Sobolev-

type metric GA. Then we have the following proposition.

Proposition 5.2.

GA(HessJ(Ω)[V ],W ) =

∫
∂Ω

[
∂

∂ν⃗

(
k2 −

(
∂uΩ
∂ν⃗

)2
)

+ Kc

(
k2 −

(
∂uΩ
∂ν⃗

)2
)]〈

V, ν⃗
〉〈
W, ν⃗

〉
dσ. (5.43)

Proof.

GA(HessJ(Ω)[V ],W ) =

∫
∂Ω

(
1 +AK2

c

)
HessJ(Ω)[V ]W,

=

∫
∂Ω

(
1 +AK2

c

)
∇V gradJ(Ω)W,

=

∫
∂Ω

(
1 +AK2

c

)
∇hgradJ(Ω)m.

Since gradJ(Ω) = 1
1+AK2

c
ψ, we have

∇hgradJ(Ω) =
∂

∂ν⃗
(gradJ(Ω))α+

(
3AK3

c +Kc

1 +AK2
c

)
gradJ(Ω)α,

=
∂

∂ν⃗

(
1

1 +AK2
c

ψ

)
α+

1

1 +AK2
c

ψ

(
3AK3

c +Kc

1 +AK2
c

)
α,

=
∂

∂ν⃗

[
(1 +AK2

c )
−1
]
ψα+

∂ψ

∂ν⃗

(
1

1 +AK2
c

)
α+

1

1 +AK2
c

ψ

(
3AK3

c +Kc

1 +AK2
c

)
α,

= −2AKc
∂Kc

∂ν⃗

(
1 +AK2

c

)−2
ψα+

∂ψ

∂ν⃗

(
1

1 +AK2
c

)
α

+
1

1 +AK2
c

ψ

(
3AK3

c +Kc

1 +AK2
c

)
α.

Note that ∂Kc
∂ν⃗ = K2

c , which implies that:

∇hgradJ(Ω) =
−2AK3

c

(1 +AK2
c )

2ψα+
∂ψ

∂ν⃗

(
1

1 +AK2
c

)
α

+
1

1 +AK2
c

ψ

(
3AK3

c +Kc

1 +AK2
c

)
α. (5.44)
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Then, coming back to our hessian computation, we have

GA(HessJ(Ω)[V ],W ) =

∫
∂Ω

(
1 +AK2

c

) [ −2AK3
c

(1 +AK2
c )

2ψα+
∂ψ

∂ν⃗

(
1

1 +AK2
c

)
α

+
1

1 +AK2
c

ψ

(
3AK3

c +Kc

1 +AK2
c

)
α

]
βdσ,

=

∫
∂Ω

[
−2AK3

c

1 +AK2
c

ψα+
∂ψ

∂ν⃗
α+ ψ

(
3AK3

c +Kc

1 +AK2
c

)
α

]
βdσ,

=

∫
∂Ω

[
∂ψ

∂ν⃗
+ ψ

(
AK3

c +Kc

1 +AK2
c

)]
αβdσ,

=

∫
∂Ω

[
∂ψ

∂ν⃗
+ ψKc

(
1 +AK2

c

1 +AK2
c

)]
αβdσ. (5.45)

Replacing ψ by its expression, we have

GA(HessJ(Ω)[V ],W ) =

∫
∂Ω

[
∂

∂ν⃗

(
k2 −

(
∂uΩ
∂ν⃗

)2
)

+ Kc

(
k2 −

(
∂uΩ
∂ν⃗

)2
)]〈

V, ν⃗
〉〈
W, ν⃗

〉
dσ. (5.46)

□

Remark 5.2. Let us note first that there is a symmetry relation with respect to the hessian

which is in the case of our considered Riemannian structure a self adjoint operator with

respect to the metric GA.

And the second fact is that it is important to underline that the formulas (5.42) obtained from

the formula in Theorem 5.1 and (5.46) computed by a direct method with the metric GA in

two different ways, have to give the same expression even if Ω is not a critical point. And

then from these computations, one deduces that

∫
∂Ω

[
−2
〈
W, ν⃗

〉(
grad(u′Ω).ν⃗ +D2uΩV.ν⃗ + grad(uΩ). (−gradΓ(V.ν⃗) +Dν⃗V )

)]
dσ

=

∫
∂Ω

3AK3
c +Kc

1 +AK2
c

(
k2 −

(
∂uΩ
∂ν⃗

)2
)〈

V, ν⃗
〉〈
W, ν⃗

〉
dσ. (5.47)

Remark 5.3. In this remark, we compute GA(V,HessJ(Ω)[W ]) to show the symmetry re-

lation with respect to the hessian with the computation of the direct method with the metric
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GA.

GA(V,HessJ(Ω)[W ]) =

∫
∂Ω

(
1 +AK2

c

)
HessJ(Ω)[W ]V,

=

∫
∂Ω

(
1 +AK2

c

)
∇W gradJ(Ω)V,

=

∫
∂Ω

(
1 +AK2

c

)
∇mgradJ(Ω)h (5.48)

where V = h = αν⃗ and W = m = βν⃗. Since gradJ(Ω) = 1
1+AK2

c
ψ, we have

∇mgradJ(Ω) =
∂

∂ν⃗
(gradJ(Ω))β +

(
3Ak3c +Kc

1 +AK2
c

)
gradJ(Ω)β,

=
∂

∂ν⃗

(
1

1 +AK2
c

ψ

)
β +

1

1 +AK2
c

ψ

(
3Ak3c +Kc

1 +AK2
c

)
β.

As previously, by the same computations, we get

∇mgradJ(Ω) =
−2AK3

c

(1 +AK2
c )

2ψβ +
∂ψ

∂ν⃗

(
1

1 +AK2
c

)
β +

1

1 +AK2
c

ψ

(
3Ak3c +Kc

1 +AK2
c

)
β.

And finally, we have

GA(HessJ(Ω)[W ], V ) =

∫
∂Ω

(
1 +AK2

c

) [ −2AK3
c

(1 +AK2
c )

2ψβ +
∂ψ

∂ν⃗

(
1

1 +AK2
c

)
β

+
1

1 +AK2
c

ψ

(
3AK3

c +Kc

1 +AK2
c

)
β

]
αdσ,

=

∫
∂Ω

[
∂

∂ν⃗

(
k2 −

(
∂uΩ
∂ν⃗

)2
)

+Kc

(
k2 −

(
∂uΩ
∂ν⃗

)2
)]〈

V, ν⃗
〉〈
W, ν⃗

〉
dσ.

Let us have a look at the two formulas of the second derivation when V =W = αν⃗.

On the one hand, by Proposition 4.1, we get

Q(α) = d2J(Ω;V ;V ),

= −(N − 1)

∫
∂Ω
Hα2dσ + k2

∫
Ω
|grad(Λ)|2dx,

= −(N − 1)k2
∫
∂Ω
Hα2dσ + k2

∫
∂Ω
αLαdσ. (5.49)

On the other hand by Theorem 5.1, we have

GA (HessJ(Ω)[V ],W ) = d (dJ(Ω)[W ]) [V ]− dJ(Ω)[∇VW ]. (5.50)

Then for V =W we derive

d (dJ(Ω)[V ]) [V ] = d2J(Ω;V ;V ) = GA (HessJ(Ω)[V ], V ) + dJ(Ω)[∇V V ]. (5.51)

• If the quadrature surface problem has a solution Ω, then

d (dJ(Ω)[V ]) [V ] = GA (HessJ(Ω)[V ], V ) .
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• In previous works, the second author studied the stability and positiveness of the

quadratic form, see [30] for more details. He established a proposition similar to

Proposition 4.1 and gave necessary and sufficient qualitative properties in the theo-

retical point of view.

The one obtained involves the study of a generalized spectral Steklov problem that is re-

minded in the following corollary.

Corollary 5.1. Let us consider the following generalized spectral Steklov problem:

∆ϕn = 0 in Ω\K

ϕn = 0 on ∂K

(L+ (N − 1)HI)ϕn = (
1

µn
− ∥H−∥∞)ϕn on ∂Ω,

where I is the identity map, H is the mean curvature of Ω, K is a compact regular enough

subset of Ω, H− = max{−H, 0} and µn is a decreasing sequence of eigenvalues depending

also on H which goes to 0. And one must have the sign of the first eigenvalue

λ0 :=
1

µ0
−∥H−∥∞ = inf

{
(N−1)

∫
Hv2dσ+

∫
Ω\K

|grad(Λ)|2dx, v ∈ H1/2(∂Ω),

∫
∂Ω
v2dσ = 1

}
,

where

∆Λ = 0 in Ω\K

Λ = 0 on ∂K

∂Λ

∂ν⃗
= v on ∂Ω.

And the minimum is reached for ϕ0 satisfying

∆ϕ0 = 0 in Ω\K

ϕ0 = 0 on ∂K

(L+ (N − 1)HI)ϕ0 = λ0ϕ0 on ∂Ω.

From our work we can deduce the following conclusions as a corollary.

Corollary 5.2. • What is obtained with the Riemannian hessian formula is easier to

derive simple control for the characterization of the optimal shape in a number of

ways.
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• In the case of minimum, GA (HessJ(Ω)[V ], V ) ≥ 0. And this inequality is equivalent

to

∫
∂Ω

[
∂

∂ν⃗

(
k2 −

(
∂uΩ
∂ν⃗

)2
)]

α2dσ ≥ 0, ∀α ∈ C∞(R2,R) ∩H1/2(∂Ω).

This is reduced to

∫
∂Ω

∂

∂ν⃗

(
k2 −

(
∂uΩ
∂ν⃗

)2
)
dσ ≥ 0.

One can deduce also another control, since∫
∂Ω

[
∂

∂ν⃗

(
k2 −

(
∂uΩ
∂ν⃗

)2
)]

α2dσ = −2k2(N − 1)

∫
∂Ω
Hα2dσ = −2k2(N − 1)

∫
∂Ω
Kcα

2dσ.

Before proceeding further, let us underline that in two dimension H = Kc. And know-

ing that α ∈ C∞(R2,R) ∩ H1/2(∂Ω), the control becomes

∫
∂Ω
Kcdσ = 2πχ(∂Ω) ≤ 0

where χ(∂Ω) is the Euler- Poincaré characteristic. And from this, we can deduce that

by Gauss- Bonnet theorem the control is done on the Euler-Poincaré characteristic.

And from this, we have key information to set up algorithm in order to get a good

approximation of the optimal shape.

• Now, when Ω is only a critical point, to get a strict local minimum, we need the

following sufficient condition:∫
∂Ω

[
∂

∂ν⃗

(
k2 −

(
∂uΩ
∂ν⃗

)2
)]

α2dσ = −2k2(N − 1)

∫
∂Ω
Kcα

2dσ ≥ C0∥α∥2, C0 > 0.

One can say also that there is x0 ∈ ∂Ω,−2k2(N − 1)Kc(x0)

∫
∂Ω
α2dσ ≥ C0∥α∥2. And

if Kc(x0) < 0, then Ω is a strict local minimum. If the Euler-Poincaré characteristic

is positive, then there is not a minimum.
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[14] Durrleman, S., Pennec, X., Trouvé, A., & Ayache, N. (2009). Statistical models of sets of curves and

surfaces based on currents. Medical image analysis, 13(5):793–808.

[15] Ebenfelt, P., Gustafsson, B., Khavinson, D., & Putinar, M. (2006). Quadrature domains and their appli-

cations: the Harold S. Shapiro anniversary volume, volume 156. Springer Science & Business Media.
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