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QUASI HEMI-SLANT CONFORMAL SUBMERSIONS FROM
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ABSTRACT. We take into account the quasi hemi-slant conformal submersion from Ken-
motsu manifold onto the Riemannian manifold as a generalization of anti-invariant submer-
sions, semi-slant submersions, and hemi-slant submersions. We discussed the integrability
and totally geodesicness of the different distributions. Moreover, we have obtained a condi-
tion under which the conformal hemi-slant submersions become a homothetic map.
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1. INTRODUCTION

The concept discussed by B. O’Neill [26] and A Gray [16] is known as Riemannian sub-
mersions. In 1976, B. Watson [42], considered the submersion between almost Hermitian
manifolds with name as almost Hermitian submersions. He established that, if the whole
manifold is a Kaehler manifold, then the base manifold is also a Kaehler manifold. The Rie-
mannian submersions consist many applications in mathematics and in physics, specially in
Yang-Mills theory ([8],[44]), Kaluza-Klein theory ([9],[22]). The Riemannian submersions are
very interesting tools in geometry to study Riemannian manifolds having differentiable struc-

tures. B. Sahin, in ([37], [39]), respectively, presented the idea of anti-invariant Riemannian
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submersions and slant-submersion from virtually Hermitian manifold as a generalisation of
Riemannian submersions.

The notion of almost contact Riemannian submersions from almost contact manifold was
introduced by Chinea in [II]. He also studied the fibre space, base space and total space
with differential geometric point of view. As a generalization of Riemannian submersions,
Fuglede [15] and Ishihara [23] separately, studied horizontally conformal submersions. Later
on, many authors investigated different kinds of Riemannian submersions like anti-invariant
submersions ([5], [37]), slant submersions ([4], [39]), semi-slant submersions ([2], [19], [28])
and hemi-slant submersions ([43], [1]) between almost Hermitian manifolds as well as almost
contact manifolds. R Prasad et al. ([31], [32], [33], [34]) studied Quasi-bi-slant submersion
from Kenmotsu manifold onto Riemannian manifolds and they also studied Riemannian sub-
mersion from Kenmotsu manifolds with different aspect whereas Sezin [41] studied bi-slant

submersions from contact manifold with taking £ as horizontal vector field.

In this paper, we study quasi hemi-slant conformal submersions from Kenmotsu manifold
onto a Riemannian manifold taking 4 mutually orthogonal complementary distributions.
This paper contains 4 sections. Section 2 consists some definitions of almost contact metric
manifold and specially kenmotsu manifold, In section 3, we study some basic results for
quasi hemi-slant conformal submersion from Kenmotsu manifold which are needed for our
main sections. Section 4 contains the results of integrability and totally geodesicness of

distributions.

2. PRELIMINARIES

Let M be a (2n + 1)-dimensional almost contact manifold with almost contact structures

(¢,€,m), where ¢ is a (1,1) tensor field £, a vector field and 7, a 1- form satisfying

¢*=—-I+n®E nE) =1, nogp=0. (2.1)

On an almost contact manifold, there exists a Riemannian metric g which is compatible

with the almost contact structure (M, ¢,£,n) in the sense that

9(eU, V) = g(U, V) —n(U)n(V), (2.2)

from which it can be observed that

9(U, &) = n(U), (2.3)
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for any U, V € T'(TM) and the manifold (M, ¢,£,n, g) is called an almost contact metric
manifold. If [¢, @] denotes the Nijenhuis tensor of ¢, then the almost contact structure is
normal if and only if the torsion tensor [¢, ¢] + 2dn ® & vanishes. An almost contact metric
structure is called a contact metric structure if dn = ®, where ® is the fundamental 2-form
defined by ®(U, V') = g(U, V). Almost contact metric structure (¢, £, n, g) are said to define

a Kenmotsu structure on M if the following characterizing tensorial equation is satisfied
(Vuo)V = g(oU, V)& —n(V)pU. (2.4)
One can deduce from the above relations that
Vo€ =U —nU)k. (2.5)
It is also seen that
9(oU, V) = —g(U, V). (2.6)
The covariant derivative of ¢ is defined by

(Vuo)V = VyoV — Vi V. (2.7)

Now, we recall the notion of Riemannian submersion and horizontally conformal submer-

sion followed by some basic results those will be useful throughout the text.

Definition 2.1. Let (M,g) and (N,g') be two Riemannian manifolds and F : M — N be
a smooth Riemannian submersion. Then F is called a horizontally conformal submersion,

with a positive function A such that

g(X,Y) = .

129 (BXBY), (2.8)

for any X,Y € T(kerF,)*. It is clear that a horizontally conformal submersion with A\ = 1

1s Riemannian submersions.

Let F: M — N be a conformal submersion. A vector field F on M is called projectable
if there exists a vector field E on N such that F.(E,) = E for any p € I'(TM).

B. O’ Neill defined the tensors 7 and A called fundamental tensors and defined by for

vector fields 7 and Fy on M such that
AE‘lEQ =HVyg, VEs +VVyr HE> (2.9)

Te,E2 = HVyp, VEy + VVyE, HE, (2.10)
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where the vertical and horizontal projections are V and H respectively. Considering the

equations (2.9) and (2.10)), we have

Vo, Vi = T, Vi + VWi, Vi (2.11)
Vo, X1 = To, X1+ HVu, X3 (2.12)
Vx,U1 = Ax, Uy + VVx, U3 (2.13)
Vx, Y1 =HVx, Y1+ Ay 1 (2.14)

for any Uy, V4 € T'(kerF,) and X;,Y; € ['(kerF,)*.

For g € M,V € V, and X € H,, the linear operators Ty, Ax : T,M — T,M are

skew-symmetric, that is

9(AxEn, E2) = —g(E1, Ax E2) (2.15)

g(TvEl,Eg) = —g(El,TVEQ) (216)

for any E, Ey € T'(T,M).
Let (M, g) and (N, g’) be two Riemannian manifolds. Let ¢ : M — N be a smooth map.

Then, the second fundamental form of ¢ is given by

for all X,Y € I'(T,M), where V the Levi-Civita connection of the metrics g and ¢’ and V¥
is the pullback connection. The map ¢ is said to be totally geodesic map if (V. )(U,V) =0
for any U,V € I'(T,M).

Lemma 2.1. Let F': M — N be a horizontal conformal submersion. Then, for any hori-

zontal vector fields X1,Y1 and vertical vector fields Uy, Vi
(i) (VF)(X1,Y7) = X0(In\)Fe(Y1) + Yi(In\) Fiu(X1) — 9(X3, Y1) Fi(grad In)),

(ii) <VF*)(U17 Vl) = _F*(TU1V1)7
(i) (VE) (X1, U1) = —F.(Vx,Uh) = —F(Ax, U7).
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3. Quasti HEMI-SLANT CONFORMAL SUBMERSIONS

Definition 3.1. A conformal submersion F' from almost contact metric manifold (M, ¢,&,n,9)
onto a Riemannian manifold (N, g') is said to be a quasi hemi-slant conformal submersion
(QHSC submersions) if its vertical distribution kerFx of F' admits four orthogonal comple-
mentary distributions Dy, Dg, D| and < & > such that

(i
(ii

(ii

) ketFx =Dr @ Dg®d D, <€ >
) Dr is invariant, i.e., $Dp = Dy
) D, is anti-invariant, i.e., 9D C (kerF,b)
(iv) for any non-zero vector field X € (Dg)p,p € M, the angle § between ¢X and (Dp),
is constant and independent of the choice of point p and X in (Dy)p,
where < & > is 1-dimensional distribution spanned by €. Then, we say that F is QHSC

submersion where angle 6 is called the quasi hemi-slant angle of submersion. Here we have

some particular cases which are stated as :

(i) If the distribution D7 = 0 then the map F' is a conformal hemi-slant submersion.
(ii) If the distribution Dy = 0 then the map F' is a conformal semi-invariant submersion.

(iii) If the distribution D; = 0 then the map F' is a conformal semi-slant submersion.

Hence, it is clear that the QHSC submersions are generalized version of conformal hemi-slant
submersions, conformal semi-invariant submersions and conformal semi-slant submersions.
Let F be a QHSC submersion from an almost contact metric manifold (M, ¢, £, n, g) onto

a Riemannian manifold (N, ¢'). Then, for any U € I'(kerF}), we have
U=PU+ QU+ RU +n(U)¢ (3.18)

where P, and R are the projections morphism onto Dy, Dy and D;. Now, For any
U € T'(kerFy)
oU = pU + oU (3.19)

where SU € I'(kerF,) and 6U € T'((kerF,)*). From equations (3.18), (3.19) and definition
[3.1] we have

¢U = ¢(PU) + ¢(QU) + ¢(RU)
= B(PU) + 6(PU) + B(QU) + 6(QU) + B(RU) + 6(RU)

We obtain §PU = 0 and SRU = 0, we have

oU = B(PU) + B(QU) + 6(QU) + §(RU).
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Hence, we have the decomposition as :

kerFxt = 6Dy ® 6D @ p, (3.20)

where y is the orthogonal complementary distribution to 6Dy @ 6D in ((kerFs)*) and y is

invariant with respect to ¢. Now, for any X € (I'(kerF.)"), we have
6X = BX + CX (3.21)

where BX € I'(kerF,) and CX € I'(u).

Lemma 3.1. Let (M,$,&,1n,9) be a Kenmotsu manifold and (N,g') be a Riemannian man-
ifold. If F: M — N is a QHSC submersion, then we have

dBX +C?’X =X, BBX +BCX =0

B2U 4+ BSU = U —n(U)¢, 66U + CoU =0

for U € T'(kerF+) and X € I'((kerF,)™*).

Proof. On using equations (2.1), (3.19) and (3.21]), we get the desired results.

Lemma 3.2. [3I] Let F be a QHSC submersion from an almost contact metric manifold
(M, ¢,&,m,9) onto a Riemannian manifold (N, g'), then we have
(i) B2U = —cos?0U
(i) g(BU,BV) = cos? g(U,V)
(iii) g(6U,6V) = sin? 0 g(U, V),

U,V ¢ F(D@).
Proof. The proof of above Lemma is similar to the proof of the Theorem (3.5) of [35].

Lemma 3.3. Let (M, $,&,n,9) be a Kenmotsu manifold and (N,g') be a Riemannian man-
ifold. If F: M — N is a QHSC submersion, then we have

AxBY + HVxCY = BHVxY + BAxY — g(¢X,Y)¢ (3.22)

VYV BY + AxCY = 0HVxY + CAxY. (3.23)

VVxBV + AxdV = BAxV + BVVxV + g(BX, V)¢ — n(V)BX (3.24)
AxBV + HV X6V = CAxV + 5VVxV +n(V)CX. (3.25)

VVyBX 4+ TyCX = BTy CX + BHVy X + g(§V, X)¢ (3.26)
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TvBX +HVyCX =0Ty X + CHVy X.
VVuBV + TudV +n(V)BU = BTy V + YV V + g(oU, V)€

TuBV + HV oV + n(V)SU = CTyV + 5VV, V.

for U,V € T'(ker F\) and X,Y € T'((kerFs)1).
Now we define the following :
(VuB)V =VVypV — pyvyV
(Vud)V = HVydV — sV V
(VxB)Y = VWxBY — BHVxY

(VxC)Y = HVxCY — CHVxY

for U,V € I'(ker F,) and X,Y € I'((ker F,)™*).
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(3.27)
(3.28)

(3.29)

(3.30)

(3.31)
(3.32)

(3.33)

Lemma 3.4. Let (M, ¢,&,n, g) be Kenmotsu manifold and (N, g') be a Riemannian manifold.

IfF: M — N is a QHSC submersion, then we have
(VuB)V = BTyV — TudV + g(oU, V)E —n(V) U
(Vud)V = CTyV = TuBV — n(V)5U
(VxB)Y = BAXY — AxCY + g(6X,Y)E — n(Y)BX

(VxCO)Y =5AxY — AxBY —n(Y)CX,

for U,V € T'(kerFx) and X,Y € I'(( kerF,1)).

Proof. On using equations (2.7)), (2.11)- (2.14)), equations (3.19)-(3.21) and equations

(13-30)-(3.32)), we get the proof of the lemma.

If the tenors 8 and § are parallel with respect to the connection V of M, then we have

BTyV =TydV — g(oU, V)E +n(V)BU

CToV =TydéV +n(V)oU

for X,Y € D(TM).
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4. INTEGRABILITY AND TOTALLY GEODESICNESS OF DISTRIBUTIONS

Now, we start the discussion of the integrability of distributions and firstly we finding

out the integrability of slant distribution as follows:

Theorem 4.1. Let F : (M,¢$,£,1,9) — (N,g') be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N. Then Dy is integrable if and only if
9 (VE)(V1, BPa), F.(0V2)) + g'(VE) (Va, BPa), Fu (V1))
= \2g(VVv, BPa — Ty, 0Ra, Va)
+ N g(VVy, fPa — Ti,6Ra, BVY)
+ g(HV1,0Re, V1) — g(HVv, 0R v, 6V3)

for any Vi,Vo € T'(Dy) and a e T'(Dr & D, < £ >).

Proof. For any Vi,V € I'(Dy) and o € I'(Dy & D & < € >) with using (2.2).(2.7)
and , we get
9(V1, V2], @) = g(Vvy 0, 9V1) — g(Vvy 9cv, §V2).

Taking equation , we have

9(W1, V2], @) = (Vs 8P, BV1) + g(Viz 0 Ra, ¢V1)

— 9(Vvi BPa, $V2) — g(Vy 0 Ra, ¢V3).
From and (2.12), we can write
9([Vi, Vo), @) = g(Tv, BPa — HV v, 6 Ra, 6V2)

+9(VVv BPa — Ty, 0Ra, BV2)
+ g(Tv,BPa — HV v, 0 R, V1)
+ g(VV1,8Pa — Ty, 6 Rav, BVA).
Considering equation , we may write
9(N1, V2], @) = g(VV, 8P — Ty 6 Rev, BV1)
+ g(VVy, BPa — Ty, 0 Ra, BV53)
— g(HVv,0Ra, 6Va) + g(HV,0Ra, 6V7)
— 550 (VE)(Vi, BPa), Fu(5V3))

- %g’((VF*)(Vz,BPa),F*(5V1))

from which we get the desired result.
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Theorem 4.2. Let F : (M,$,&,1,9) — (N,g') be QHSC submersion from a Kenmotsu
manifold onto a Riemannian manifold N. Then invariant distribution Dt is integrable if

and only if
P(VVy, 8Qa + Ty, 6a) =0 (4.34)

for Uy € T'(Dr) and a e T(Dg® D & < € >).

Proof. On using (2.2), and (3.18)), we have
9(Vu, Uz, a) = =g(Vu, (9Qa + ¢Ra), 9Us) — n(a)g(¢Us, ¢Us),

for Uy € I'(Dr) and a € T'(Dg & D, & < £ >). Since §(Qa + Ra) = da and from (2.11)),
(2.12)), we can write

9(Vu, Uz, a) = —g(VVy, BQa, ¢Usz) — g(Tv, 6, ¢Usz)

—n(a)g(oUi, ¢Us)

Change the role of U; and Us, we have
9([U1, V2], ) = —g(VVy, BQa + Ty, 6cx, pU2)
+ g<va25Qa + 7-U26047 (bUl)

We obtain the proof of the theorem from above equation.

Theorem 4.3. Let F : (M,¢,&,1,9) — (N,g') be QHSC submersion from a Kenmotsu
manifold onto a Riemannian manifold N. Then anti-invariant distribution D, is integrable
if and only if
1
ﬁ[g/(VZQF*(sQa, F.(621)) — ¢ (V 2, F.dQa, Fi(625))]
= g(grad(ln ), Z1)g(6Qa, 0 Z3)
(4.35)
—g(grad(In \), Z2)g(0Qa, 621)

- 9(7}2/6047 521) + 9(7215057 5Z2)

for Z1,Zy € (D)) and o € T'(Dp @ Dp® < £ >).

Proof. From , (12.3), and (3.18)), we have
9(Vz, 22, ) = —n(a)g(Z1,0Z2) — g(V z,(BPa + BQa + 6 Ra), $Z3).

Since f(Pa + Qa) = fa, we can write

9(Vz,Zs,a) = —n(a)g9(Z1,9Z2) — g(Vz,Ba+ V z,0Qa,0Z3).
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Now, change the roles of Z; and Z,, we can write
9([Z1, Za], ) = g(V z,Ba+ V2,0Qa,671) — g(V z,fa+ V 2,0Qa, 6 Z5).

Considering equations and , we get
9([Z1, Z2), ) = g(V 2,B0,6Z1) + g(HV 2,0Q0, 6 Z2)
— 9(Tz,Ba,02) + g(HV 2,0Q0, 8 Z5).
From (2.8), and lemma we have
9([21, Z2], ) = %[g’(VZQF*éQa, F.(021)) = ¢ (Vz, FidQa, F.(22))]
+ 9(Tz,Ba,021) — g(Tz,Bov, 6 22)
+ g(grad(In ), Z2)g(0Qa, 6 Z1)
—g(grad(In}), Z1)g(6Qcv, 6 Z5)
which completes the proof of the theorem.

Now, we will discussed the totally geodesicness of fibers of the distributions. Firstly, we

will start with the totally geodesicness of the invariant distribution Dr.

Theorem 4.4. Let F : (M,¢$,£,1,9) — (N,g') be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N. Then Dt is not totally geodesic.

Proof. On considering U,V € T'(Dr) and since V and £ are orthogonal, we have
9(VuV. &) = —g(V,Vue)

Taking account the fact of equation , we have
9(VuV,§) = —g(U,V).

For U,V € I'(Dr), —g(U, V) # 0, that is g(VyV,§) # 0. Hence, the distribution is not totally

geodesic.

Theorem 4.5. Let F : (M,$,&,1n,9) — (N,g') be QHSC submersion from a Kenmotsu
manifold onto a Riemannian manifold N. Then (D @ &) defines totally geodesic foliation
on M if and only if

(1) 9(VV,¢Uz, Ba) = 3519/ (VE) (Ut ¢Us), Fi(0a)]

(ii) g(VVu,¢Us, BX) = 32[g'(VE.)(U1, Us), F * (CX))]
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for Uy, Uy e T(Dr® < € >), X € T((kerF,)*) and a € T(Dg @ D).

Proof. On using (2.2), (2.4) and (2.7), we get
g(le U27 Oé) = g(le ¢U2a ¢a)7

for any Uy,Us € T'(Dp@® < & >) and o € IT'(Dy & D, ). Now, from (2.11]) and decomposition
(3.19), we can write

g(le U27 Oé) - g(vU1¢U27 (SO() + g(Vled)UQ? ,BO[)
Considering (2.8) and , we may have
1
9(Vu, Uz, ) = _FQ/((VF*)(ULGZ’U?),F*((Sa)) + 9(VVu,¢Us, Bar) (4.36)

On the other hand, for Uy, Us € T'(Dr) and X € I'((kerF,)*) with using (2.2), (2.4), (2.7)
and decomposition ([3.21)), we get

g(vU1 UQ) X) = g(VU1¢U2, BX) + g(vU1¢U27 CX)
Considering equation (2.11)), we may write

9(Vu, Uz, X) = g(VVy, Uz, BX) + g(Tv, ¢Uz, CX).

From (2.17)) and (2.17)), we have

1
g(Vy,Us, X) = g(VV,¢Us, BX) + ﬁg/

From equations (4.36)) and (4.37), we get (i) and (i) part of theorem [4.5]

(VE)(Ur, 9U2), Fi(CX)). (4.37)

Theorem 4.6. Let F : (M,$,&,1n,9) — (N,g') be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N. Then Dy is not totally geodesic on M.

Proof. On considering Z, W € T'(Dy) and since W and & are orthogonal, we have
9(VzW,§) = —g(W,V z£)

Taking account the fact of equation , we have
9(VzW,&) = —g(Z,W).

For Z,W € I'(Dy),—g(Z,W) # 0, that is g(VzW,{) # 0. Hence, the distribution is not

totally geodesic.
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Theorem 4.7. Let F : (M,$,&,1n,9) — (N,g') be QHSC submersion from a Kenmotsu
manifold onto a Riemannian manifold N. Then I'(Dg® < & >) defines totally geodesic
foliation if and only if
(i) N[g(HVy,0QVa, pRa) — cos? 0g(V, QVa, )
=9 (VE)(V1,a), F.(06QV2)) — ¢/ (VE)(V1, ¢Pa), Fi(6QV2))
—n(BQV2)g(¢V1, )]

(il) A2 [g(HV,0BQVa, X) — g(HV1,6QVa, CX) — n(BQVa)g(Vi, BX)]
= ¢ (VF)(V1, BX), F.(6QV2) — ¢'((VFy)(V1,QV2), Fiu(X))

for any V1,Va € T(Dp® < € >), X € T((kerF,)*) and a € T(Dr @ D).

Proof. From equations (2.2)), (2.4), (3.18]) and decomposition (3.19)), we get
9(Vii Vo, ) = g(Vy, BQV2, ¢a) + (V14 0Q V2, dar)

for any V1,Vo € I'(Dg® < £ >) and a € I'(Dy @ D). Again on using (2.4) and (2.7)), we

can write

9(Vi Va, a) = g(Vv,0QV2, oPa + ¢Ra) — g(Vv, ¢BQVz, a)
—n(BRV2)g(¢V1, @)
Considering lemma equation and skew symmetry property of 7, we have
9(Vvy Vo, @) = — cos® 0g(Vv, QVa, @) + g(HVv,6QVa, pRa)
+ 9(Tv,, 08QV2) — g(Tv, 9P, 6QV2)
—n(BQV2)g(¢V1, @)
Finally, from equations and , we yield

9(Vv, Va,a) = —cos? 0g(Vy, QVa, @) + g(HV1,6QVa, ¢Ra)
~ 539 (VE)(V, ), F.(55Q13))
(4.38)

+ 159 (VE)(Vi, 6Pa), F.(5QV3)
—n(BQV2)g(#Vi, ).

In similar way, for any Vi, Vs € I'(Dy) and X € T'((kerF,)*%) with using (2.2), (2.4), (2.7)
and (3.19), we get

g(VV1V27X) = g(vV15Q‘/2) ¢)X) - g(vV15Q‘/27 (;SX)
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From equation , , and , we can write
9(Vvi Vo, X) = —g(Vv, 8°QVz, X) — g(V1,08QVz, X)
+ 9(T140QVa, BX) + g(HV1,0QV2, CX)
+n(BQV2)g(V1, BX)
At last, considering equation , , , and lemma we have

9(V, V2, X) (VE)(V1, BX), Fi(6QV2))

— cos? H%QI((VF*)(vaVQ)aF*(X))

(4.39)
- g(vaVléﬁQVv% X) + g(HvV16Q‘/2’ CX)
+n(BQV2)g9(V1, BX).

Finally, from equation (4.38) and (4.39), we get the results (i) and (ii) of theorem [4.7] This

completes the proof of theorem.

Theorem 4.8. Let F : (M,¢,&,1n,9) — (N,g') be QHSC submersion from a Kenmotsu
manifold onto a Riemannian manifold N. Then D, is not defined totally geodesic foliation

on M.

Proof. On considering Z, W € I'(D, ) and since W and & are orthogonal, we have
9(VzW. &) = —g(W,V z¢)

Taking account the fact of equation , we have
9(VzW,§) = —g(Z, W).

For Z,W € T'(Dy),—g(Z,W) # 0, that is g(VzW,&) # 0. Hence, the distribution is not

totally geodesic.

Theorem 4.9. Let F : (M,¢$,£,1,9) — (N,g') be QHSC submersion from a Kenmotsu
manifold onto a Riemannian manifold N. Then D) ® < £ > defines totally geodesic foliation
if and only if

(i) )\%g/((VF*)(ZbBa)? F*(¢ZQ)) = g(HvZ1¢Z2a (5QO‘)

(i) 329'(VE)(Z1, BX), Fi(¢Z2)) = 9(HV 2,CX, ¢ Z»)

for any Z1,Z5 € T(D1® < € >), X € T((kerFy)*) and a € T(Dr @ D).
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Proof. On using equations ([2.2)), (2.4), (2.7), we can write
g(vZ1 ZQ) Oé) = g(le QSZZa (;SOZ),

for any 71,7 €e T'(D 1 ® < € >) and o € I'(Dp @ Dy). On using the fact that SPa+ Qo =
Ba with equations (3.18]), (2.11]), we get

9(Vz,Z2,a) = 9(Tz,9Z2, Ba) + g(HV 2,022, 6Qa).
Considering equation (2.8)) and (2.17)) and use anti-symmetric property of 7, we have
1
g(VZl ZQ? Ot) = Pg,((vF*be 604)7 F*(d)ZQ)) + g(,HVZ1 ¢Z27 5Q0é) (440)

On the other hand, for any Z, Zo € I'(D,) and X € I'((kerF,)*) with using equations (2.2)),
&9, @7) and (B20), we have

g(VZ1Z2aX) = *g(leBX, ¢Z2) - g(vZ1CX7 ¢Z2)'

Considering equations (2.8]), (2.11)), (2.12]) and (2.17)), we can write

g(vZ1Z27X) - %g/((VF*ley BX)? F*(¢Z2>) - g(HvZ1CX7 (ZSZQ) (441)

From equations (4.40) and (4.41]), the proof of the theorem is complete.

Theorem 4.10. Let F : (M,¢,&,m,9) — (N,g') be QHSC submersion from a Kenmotsu
manifold onto a Riemannian manifold N. Then the vertical distribution (kerF) defines

totally geodesic foliation if and only if

0s? 05/ (VE) Vi, @V2), Fu(X) + 350 (VE) (1, BPYa), Fu(CX))

= g(VVy,BPY2 + Ty, 6QY2 + Ty, 0 RY2, BX)

+ g(HVy,0QY2 + HVy,0RY2,CX) — g(HVy,05QY2, X),
for any Y1,Ys € T(kerF,) and X € T'((kerF,)*Y).
Proof. On using (2.2)), (2.4) and (2.7) with decomposition (3.18)), we have

9(V Y2, X) = g(Vy, BPYs + BQY> + 6QY2 + 6 RY3, ¢.X),
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for any Y1,Ys € I'(kerF,) and X € I'((kerF,)*). From equations (2.11)), (2.12)) and (3.21)),
we yield

9(Vyv, Y2, X) = g(VVy, BPY2 + Ty, 6QY2 + Ty, 6 RY>, BX)
+ 9(Ty, BPY2 + HVy,0QYs + HVy, 6 RY2, CX)
+ 9(Vy, BQY2, 9.X).
Taking with equations , and , we may have
9(Vy, Y2, X) = g(VVy, BPY2 + Ty, 6QY2 + Ty, 6 RY3, BX)
+ 9(Tyv, BPY2 + HVy,6QY2 + HVy, 0RY>, CX)
— 9(Vy8°QY2, X) — g(Vy; 68QY2, X).
Consider lemma with equations and , we get
9(Vy, Y2, X) = g(VVy, BPY2 + Ty, 6QY2 + Ty, 6 RY>, BX)
+ g(HVy,0QY> + HVy, 6 RY>,CX)
+ cos” 0g(Vy, QY2, X) — g(Vy,56QYz2, X)
~ 139 (VE)(V:, 6PY2), E(CX).
Again using and (2.17)), we finally have
9(Vyv, Y2, X) = g(VVy, BPY2 + Ty, 6QY>2 + Ty, 6 RY>, BX)

+ g(HVy,0QY2 + HVy, 0RY>, CX)

+cos? 05 (VE)(Y1, QY2), F.X) — g(Vy,05QY5, X)

— 329 (VE)(Y1, BPY2), F.(CX)).

This completes the proof of the theorem.
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