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QUASI HEMI-SLANT CONFORMAL SUBMERSIONS FROM

KENMOTSU MANIFOLD
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Abstract. We take into account the quasi hemi-slant conformal submersion from Ken-

motsu manifold onto the Riemannian manifold as a generalization of anti-invariant submer-

sions, semi-slant submersions, and hemi-slant submersions. We discussed the integrability

and totally geodesicness of the different distributions. Moreover, we have obtained a condi-

tion under which the conformal hemi-slant submersions become a homothetic map.
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1. Introduction

The concept discussed by B. O’Neill [26] and A Gray [16] is known as Riemannian sub-

mersions. In 1976, B. Watson [42], considered the submersion between almost Hermitian

manifolds with name as almost Hermitian submersions. He established that, if the whole

manifold is a Kaehler manifold, then the base manifold is also a Kaehler manifold. The Rie-

mannian submersions consist many applications in mathematics and in physics, specially in

Yang-Mills theory ([8],[44]), Kaluza-Klein theory ([9],[22]). The Riemannian submersions are

very interesting tools in geometry to study Riemannian manifolds having differentiable struc-

tures. B. Sahin, in ([37], [39]), respectively, presented the idea of anti-invariant Riemannian
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submersions and slant-submersion from virtually Hermitian manifold as a generalisation of

Riemannian submersions.

The notion of almost contact Riemannian submersions from almost contact manifold was

introduced by Chinea in [11]. He also studied the fibre space, base space and total space

with differential geometric point of view. As a generalization of Riemannian submersions,

Fuglede [15] and Ishihara [23] separately, studied horizontally conformal submersions. Later

on, many authors investigated different kinds of Riemannian submersions like anti-invariant

submersions ([5], [37]), slant submersions ([4], [39]), semi-slant submersions ([2], [19], [28])

and hemi-slant submersions ([43], [1]) between almost Hermitian manifolds as well as almost

contact manifolds. R Prasad et al. ([31], [32], [33], [34]) studied Quasi-bi-slant submersion

from Kenmotsu manifold onto Riemannian manifolds and they also studied Riemannian sub-

mersion from Kenmotsu manifolds with different aspect whereas Sezin [41] studied bi-slant

submersions from contact manifold with taking ξ as horizontal vector field.

In this paper, we study quasi hemi-slant conformal submersions from Kenmotsu manifold

onto a Riemannian manifold taking 4 mutually orthogonal complementary distributions.

This paper contains 4 sections. Section 2 consists some definitions of almost contact metric

manifold and specially kenmotsu manifold, In section 3, we study some basic results for

quasi hemi-slant conformal submersion from Kenmotsu manifold which are needed for our

main sections. Section 4 contains the results of integrability and totally geodesicness of

distributions.

2. Preliminaries

Let M be a (2n+1)-dimensional almost contact manifold with almost contact structures

(ϕ, ξ, η), where ϕ is a (1, 1) tensor field ξ, a vector field and η, a 1- form satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ ϕ = 0. (2.1)

On an almost contact manifold, there exists a Riemannian metric g which is compatible

with the almost contact structure (M,ϕ, ξ, η) in the sense that

g(ϕU, ϕV ) = g(U, V )− η(U)η(V ), (2.2)

from which it can be observed that

g(U, ξ) = η(U), (2.3)
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for any U, V ∈ Γ(TM) and the manifold (M,ϕ, ξ, η, g) is called an almost contact metric

manifold. If [ϕ, ϕ] denotes the Nijenhuis tensor of ϕ, then the almost contact structure is

normal if and only if the torsion tensor [ϕ, ϕ] + 2dη ⊗ ξ vanishes. An almost contact metric

structure is called a contact metric structure if dη = Φ, where Φ is the fundamental 2-form

defined by Φ(U, V ) = g(U, ϕV ). Almost contact metric structure (ϕ, ξ, η, g) are said to define

a Kenmotsu structure on M if the following characterizing tensorial equation is satisfied

(∇̄Uϕ)V = g(ϕU, V )ξ − η(V )ϕU. (2.4)

One can deduce from the above relations that

∇̄Uξ = U − η(U)ξ. (2.5)

It is also seen that

g(ϕU, V ) = −g(U, ϕV ). (2.6)

The covariant derivative of ϕ is defined by

(∇Uϕ)V = ∇UϕV − ϕ∇UV. (2.7)

Now, we recall the notion of Riemannian submersion and horizontally conformal submer-

sion followed by some basic results those will be useful throughout the text.

Definition 2.1. Let (M, g) and (N, g′) be two Riemannian manifolds and F : M → N be

a smooth Riemannian submersion. Then F is called a horizontally conformal submersion,

with a positive function λ such that

g(X,Y ) =
1

λ2
g′(F∗X,F∗Y ), (2.8)

for any X,Y ∈ Γ(kerF∗)
⊥. It is clear that a horizontally conformal submersion with λ = 1

is Riemannian submersions.

Let F : M → N be a conformal submersion. A vector field E on M is called projectable

if there exists a vector field Ē on N such that F∗(Ep) = Ē for any p ∈ Γ(TM).

B. O’ Neill defined the tensors T and A called fundamental tensors and defined by for

vector fields E1 and E2 on M such that

AE1E2 = H∇HE1VE2 + V∇HE1HE2 (2.9)

TE1E2 = H∇VE1VE2 + V∇VE1HE2 (2.10)
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where the vertical and horizontal projections are V and H respectively. Considering the

equations (2.9) and (2.10), we have

∇U1V1 = TU1V1 + V∇U1V1 (2.11)

∇U1X1 = TU1X1 +H∇U1X1 (2.12)

∇X1U1 = AX1U1 + V∇X1U1 (2.13)

∇X1Y1 = H∇X1Y1 +AX1Y1 (2.14)

for any U1, V1 ∈ Γ(kerF∗) and X1, Y1 ∈ Γ(kerF∗)
⊥.

For q ∈ M , V ∈ Vq and X ∈ Hq, the linear operators TV ,AX : TpM → TpM are

skew-symmetric, that is

g(AXE1, E2) = −g(E1,AXE2) (2.15)

g(TV E1, E2) = −g(E1, TV E2) (2.16)

for any E1, E2 ∈ Γ(TpM).

Let (M, g) and (N, g′) be two Riemannian manifolds. Let φ : M → N be a smooth map.

Then, the second fundamental form of φ is given by

(∇φ∗)(X,Y ) = ∇φ
Xφ∗Y − φ∗(∇XY ), (2.17)

for all X,Y ∈ Γ(TpM), where ∇ the Levi-Civita connection of the metrics g and g′ and ∇φ

is the pullback connection. The map φ is said to be totally geodesic map if (∇φ∗)(U, V ) = 0

for any U, V ∈ Γ(TpM).

Lemma 2.1. Let F : M → N be a horizontal conformal submersion. Then, for any hori-

zontal vector fields X1, Y1 and vertical vector fields U1, V1

(i) (∇F∗)(X1, Y1) = X1(lnλ)F∗(Y1) + Y1(lnλ)F∗(X1)− g(X1, Y1)F∗(grad lnλ),

(ii) (∇F∗)(U1, V1) = −F∗(TU1V1),

(iii) (∇F∗)(X1, U1) = −F∗(∇X1U1) = −F∗(AX1U1).
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3. Quasi Hemi-slant Conformal Submersions

Definition 3.1. A conformal submersion F from almost contact metric manifold (M,ϕ, ξ, η, g)

onto a Riemannian manifold (N, g′) is said to be a quasi hemi-slant conformal submersion

(QHSC submersions) if its vertical distribution kerF* of F admits four orthogonal comple-

mentary distributions DT , Dθ, D⊥ and < ξ > such that

(i) kerF* = DT ⊕Dθ ⊕D⊥⊕ < ξ >

(ii) DT is invariant, i.e., ϕDT = DT

(iii) D⊥ is anti-invariant, i.e., ϕD⊥ ⊆ ( kerF∗
⊥)

(iv) for any non-zero vector field X ∈ (Dθ)p, p ∈ M , the angle θ between ϕX and (Dθ)p

is constant and independent of the choice of point p and X in (Dθ)p,

where < ξ > is 1-dimensional distribution spanned by ξ. Then, we say that F is QHSC

submersion where angle θ is called the quasi hemi-slant angle of submersion. Here we have

some particular cases which are stated as :

(i) If the distribution DT = 0 then the map F is a conformal hemi-slant submersion.

(ii) If the distribution Dθ = 0 then the map F is a conformal semi-invariant submersion.

(iii) If the distribution D⊥ = 0 then the map F is a conformal semi-slant submersion.

Hence, it is clear that the QHSC submersions are generalized version of conformal hemi-slant

submersions, conformal semi-invariant submersions and conformal semi-slant submersions.

Let F be a QHSC submersion from an almost contact metric manifold (M,ϕ, ξ, η, g) onto

a Riemannian manifold (N, g′). Then, for any U ∈ Γ(kerF∗), we have

U = PU +QU +RU + η(U)ξ (3.18)

where P,Q and R are the projections morphism onto DT , Dθ and D⊥. Now, For any

U ∈ Γ(kerF∗)

ϕU = βU + δU (3.19)

where βU ∈ Γ(kerF∗) and δU ∈ Γ((kerF∗)
⊥). From equations (3.18), (3.19) and definition

3.1, we have

ϕU = ϕ(PU) + ϕ(QU) + ϕ(RU)

= β(PU) + δ(PU) + β(QU) + δ(QU) + β(RU) + δ(RU)

We obtain δP̄U = 0 and βR̄U = 0, we have

ϕU = β(PU) + β(QU) + δ(QU) + δ(RU).
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Hence, we have the decomposition as :

kerF*
⊥ = δDθ ⊕ δD⊥ ⊕ µ, (3.20)

where µ is the orthogonal complementary distribution to δDθ ⊕ δD⊥ in ((kerF*)
⊥) and µ is

invariant with respect to ϕ. Now, for any X ∈ (Γ(kerF∗)
⊥), we have

ϕX = BX + CX (3.21)

where BX ∈ Γ(kerF∗) and CX ∈ Γ(µ).

Lemma 3.1. Let (M,ϕ, ξ, η, g) be a Kenmotsu manifold and (N, g′) be a Riemannian man-

ifold. If F : M → N is a QHSC submersion, then we have

δBX + C2X = X, βBX +BCX = 0

β2U +BδU = U − η(U)ξ, δβU + CδU = 0

for U ∈ Γ(kerF*) and X ∈ Γ(( kerF∗)
⊥).

Proof. On using equations (2.1), (3.19) and (3.21), we get the desired results.

Lemma 3.2. [31] Let F be a QHSC submersion from an almost contact metric manifold

(M,ϕ, ξ, η, g) onto a Riemannian manifold (N, g′), then we have

(i) β2U = − cos2θ U

(ii) g(βU, βV ) = cos2 θ g(U, V )

(iii) g(δU, δV ) = sin2 θ g(U, V ),

U, V ∈ Γ(Dθ).

Proof. The proof of above Lemma is similar to the proof of the Theorem (3.5) of [35].

Lemma 3.3. Let (M,ϕ, ξ, η, g) be a Kenmotsu manifold and (N, g′) be a Riemannian man-

ifold. If F : M → N is a QHSC submersion, then we have

AXBY +H∇XCY = βH∇XY +BAXY − g(ϕX, Y )ξ (3.22)

V∇XBY +AXCY = δH∇XY + CAXY. (3.23)

V∇XβV +AXδV = BAXV + βV∇XV + g(BX,V )ξ − η(V )BX (3.24)

AXβV +H∇XδV = CAXV + δV∇XV + η(V )CX. (3.25)

V∇V BX + TV CX = βTV CX +BH∇V X + g(δV,X)ξ (3.26)
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TV BX +H∇V CX = δTV X + CH∇V X. (3.27)

V∇UβV + TUδV + η(V )βU = BTUV + βV∇UV + g(ϕU, V )ξ (3.28)

TUβV +H∇UδV + η(V )δU = CTUV + δV∇UV. (3.29)

for U, V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF*)
⊥).

Now we define the following :

(∇Uβ)V = V∇UβV − βV∇UV (3.30)

(∇Uδ)V = H∇UδV − δV∇UV (3.31)

(∇XB)Y = V∇XBY −BH∇XY (3.32)

(∇XC)Y = H∇XCY − CH∇XY (3.33)

for U, V ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥).

Lemma 3.4. Let (M,ϕ, ξ, η, g) be Kenmotsu manifold and (N, g′) be a Riemannian manifold.

If F : M → N is a QHSC submersion, then we have

(∇Uβ)V = BTUV − TUδV + g(ϕU, V )ξ − η(V )βU

(∇Uδ)V = CTUV − TUβV − η(V )δU

(∇XB)Y = βAXY −AXCY + g(ϕX, Y )ξ − η(Y )BX

(∇XC)Y = δAXY −AXBY − η(Y )CX,

for U, V ∈ Γ(kerF*) and X,Y ∈ Γ(( kerF∗
⊥)).

Proof. On using equations (2.7), (2.11)- (2.14), equations (3.19)-(3.21) and equations

(3.30)-(3.32), we get the proof of the lemma.

If the tenors β and δ are parallel with respect to the connection ∇ of M , then we have

BTUV = TUδV − g(ϕU, V )ξ + η(V )βU

CTUV = TUδV + η(V )δU

for X,Y ∈ Γ(TM).
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4. Integrability and totally geodesicness of distributions

Now, we start the discussion of the integrability of distributions and firstly we finding

out the integrability of slant distribution as follows:

Theorem 4.1. Let F : (M,ϕ, ξ, η, g) → (N, g′) be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N . Then Dθ is integrable if and only if

g′((∇F∗)(V1, βPα), F∗(δV2)) + g′((∇F∗)(V2, βPα), F∗(δV1))

= λ2g(V∇V1βPα− TV1δRα, βV2)

+ λ2g(V∇V2βPα− TV2δRα, βV1)

+ g(H∇V2δRα, δV1)− g(H∇V1δRα, δV2)

for any V1, V2 ∈ Γ(Dθ) and α ∈ Γ(DT ⊕D⊥⊕ < ξ >).

Proof. For any V1, V2 ∈ Γ(Dθ) and α ∈ Γ(DT ⊕D⊥⊕ < ξ >) with using (2.2).(2.7)

and (2.4), we get

g([V1, V2], α) = g(∇V2ϕα, ϕV1)− g(∇V1ϕα, ϕV2).

Taking equation (3.18), we have

g([V1, V2], α) = g(∇V2βPα, βV1) + g(∇V2δRα, ϕV1)

− g(∇V1βPα, ϕV2)− g(∇V1δRα, ϕV2).

From (2.11) and (2.12), we can write

g([V1, V2], α) = g(TV1βPα−H∇V1δRα, δV2)

+ g(V∇V1βPα− TV1δRα, βV2)

+ g(TV2βPα−H∇V2δRα, δV1)

+ g(V∇V2βPα− TV2δRα, βV1).

Considering equation (2.17), we may write

g([V1, V2], α) = g(V∇V2βPα− TV2δRα, βV1)

+ g(V∇V1βPα− TV1δRα, βV2)

− g(H∇V1δRα, δV2) + g(H∇V2δRα, δV1)

− 1

λ2
g′((∇F∗)(V!, βPα), F∗(δV2))

− 1

λ2
g′((∇F∗)(V2, βPα), F∗(δV1))

from which we get the desired result.



INT. J. MAPS MATH. (2023) 6(2):133–150 / QU. HEMI-SL. CONF. SUB. KEN. MAN. 141

Theorem 4.2. Let F : (M,ϕ, ξ, η, g) → (N, g′) be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N . Then invariant distribution DT is integrable if

and only if

P (V∇U1βQα+ TU1δα) = 0 (4.34)

for U1 ∈ Γ(DT ) and α ∈ Γ(Dθ ⊕D⊥⊕ < ξ >).

Proof. On using (2.2), (2.4) and (3.18), we have

g(∇U1U2, α) = −g(∇U1(ϕQα+ ϕRα), ϕU2)− η(α)g(ϕU1, ϕU2),

for U1 ∈ Γ(DT ) and α ∈ Γ(Dθ ⊕ D⊥⊕ < ξ >). Since δ(Qα + Rα) = δα and from (2.11),

(2.12), we can write

g(∇U1U2, α) = −g(V∇U1βQα, ϕU2)− g(TU1δα, ϕU2)

− η(α)g(ϕU1, ϕU2)

Change the role of U1 and U2, we have

g([U1, U2], α) = −g(V∇U1βQα+ TU1δα, ϕU2)

+ g(V∇U2βQα+ TU2δα, ϕU1).

We obtain the proof of the theorem from above equation.

Theorem 4.3. Let F : (M,ϕ, ξ, η, g) → (N, g′) be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N . Then anti-invariant distribution D⊥ is integrable

if and only if

1

λ2
[g′(∇Z2F∗δQα, F∗(δZ1))− g′(∇Z1F∗δQα, F∗(δZ2))]

= g(grad(lnλ), Z1)g(δQα, δZ2)

− g(grad(lnλ), Z2)g(δQα, δZ1)

− g(TZ2βα, δZ1) + g(TZ1βα, δZ2)

(4.35)

for Z1, Z2 ∈ Γ(D⊥) and α ∈ Γ(DT ⊕Dθ⊕ < ξ >).

Proof. From (2.2), (2.3), (2.4) and (3.18), we have

g(∇Z1Z2, α) = −η(α)g(Z1, ϕZ2)− g(∇Z1(βPα+ βQα+ δRα), ϕZ2).

Since β(Pα+Qα) = βα, we can write

g(∇Z1Z2, α) = −η(α)g(Z1, ϕZ2)− g(∇Z1βα+∇Z1δQα, δZ2).
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Now, change the roles of Z1 and Z2, we can write

g([Z1, Z2], α) = g(∇Z2βα+∇Z1δQα, δZ1)− g(∇Z1βα+∇Z2δQα, δZ2).

Considering equations (2.11) and (2.12), we get

g([Z1, Z2], α) = g(∇Z2βα, δZ1) + g(H∇Z2δQα, δZ2)

− g(TZ1βα, δZ2) + g(H∇Z1δQα, δZ2).

From (2.8), (2.17) and lemma 2.1, we have

g([Z1, Z2], α) =
1

λ2
[g′(∇Z2F∗δQα, F∗(δZ1))− g′(∇Z1F∗δQα, F∗(δZ2))]

+ g(TZ2βα, δZ1)− g(TZ1βα, δZ2)

+ g(grad(lnλ), Z2)g(δQα, δZ1)

− g(grad(lnλ), Z1)g(δQα, δZ2)

which completes the proof of the theorem.

Now, we will discussed the totally geodesicness of fibers of the distributions. Firstly, we

will start with the totally geodesicness of the invariant distribution DT .

Theorem 4.4. Let F : (M,ϕ, ξ, η, g) → (N, g′) be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N . Then DT is not totally geodesic.

Proof. On considering U, V ∈ Γ(DT ) and since V and ξ are orthogonal, we have

g(∇UV, ξ) = −g(V,∇Uξ)

Taking account the fact of equation (2.5), we have

g(∇UV, ξ) = −g(U, V ).

For U, V ∈ Γ(DT ),−g(U, V ) ̸= 0, that is g(∇UV, ξ) ̸= 0. Hence, the distribution is not totally

geodesic.

Theorem 4.5. Let F : (M,ϕ, ξ, η, g) → (N, g′) be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N . Then (DT ⊕ ξ) defines totally geodesic foliation

on M if and only if

(i) g(V∇U1ϕU2, βα) =
1
λ2 [g

′(∇F∗)(U1, ϕU2), F∗(δα)]

(ii) g(V∇U1ϕU2, BX) = 1
λ2 [g

′((∇F∗)(U1, ϕU2), F ∗ (CX))]
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for U1, U2 ∈ Γ(DT⊕ < ξ >), X ∈ Γ((kerF∗)
⊥) and α ∈ Γ(Dθ ⊕D⊥).

Proof. On using (2.2), (2.4) and (2.7), we get

g(∇U1U2, α) = g(∇U1ϕU2, ϕα),

for any U1, U2 ∈ Γ(DT⊕ < ξ >) and α ∈ Γ(Dθ ⊕D⊥). Now, from (2.11) and decomposition

(3.19), we can write

g(∇U1U2, α) = g(∇U1ϕU2, δα) + g(V∇U1ϕU2, βα).

Considering (2.8) and (2.17), we may have

g(∇U1U2, α) = − 1

λ2
g′((∇F∗)(U1, ϕU2), F∗(δα)) + g(V∇U1ϕU2, βα) (4.36)

On the other hand, for U1, U2 ∈ Γ(DT ) and X ∈ Γ((kerF∗)
⊥) with using (2.2), (2.4), (2.7)

and decomposition (3.21), we get

g(∇U1U2, X) = g(∇U1ϕU2, BX) + g(∇U1ϕU2, CX).

Considering equation (2.11), we may write

g(∇U1U2, X) = g(V∇U1ϕU2, BX) + g(TU1ϕU2, CX).

From (2.17) and (2.17), we have

g(∇U1U2, X) = g(V∇U1ϕU2, BX) +
1

λ2
g′((∇F∗)(U1, ϕU2), F∗(CX)). (4.37)

From equations (4.36) and (4.37), we get (i) and (ii) part of theorem 4.5.

Theorem 4.6. Let F : (M,ϕ, ξ, η, g) → (N, g′) be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N . Then Dθ is not totally geodesic on M .

Proof. On considering Z,W ∈ Γ(Dθ) and since W and ξ are orthogonal, we have

g(∇ZW, ξ) = −g(W,∇Zξ)

Taking account the fact of equation (2.5), we have

g(∇ZW, ξ) = −g(Z,W ).

For Z,W ∈ Γ(Dθ),−g(Z,W ) ̸= 0, that is g(∇ZW, ξ) ̸= 0. Hence, the distribution is not

totally geodesic.
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Theorem 4.7. Let F : (M,ϕ, ξ, η, g) → (N, g′) be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N . Then Γ(Dθ⊕ < ξ >) defines totally geodesic

foliation if and only if

(i) λ2[g(H∇V1δQV2, ϕRα)− cos2 θg(∇V1QV2, α)

= g′((∇F∗)(V1, α), F∗(δβQV2))− g′((∇F∗)(V1, ϕPα), F∗(δQV2))

− η(βQV2)g(ϕV1, α)]

(ii) λ2[g(H∇V1δβQV2, X)− g(H∇V1δQV2, CX)− η(βQV2)g(V1, BX)]

= g′(∇F∗)(V1, BX), F∗(δQV2)− g′((∇F∗)(V1, QV2), F∗(X))

for any V1, V2 ∈ Γ(Dθ⊕ < ξ >), X ∈ Γ((kerF∗)
⊥) and α ∈ Γ(DT ⊕D⊥).

Proof. From equations (2.2), (2.4), (3.18) and decomposition (3.19), we get

g(∇V1V2, α) = g(∇V1βQV2, ϕα) + g(∇V1δQV2, ϕα)

for any V1, V2 ∈ Γ(Dθ⊕ < ξ >) and α ∈ Γ(DT ⊕ D⊥). Again on using (2.4) and (2.7), we

can write

g(∇V1V2, α) = g(∇V1δQV2, ϕPα+ ϕRα)− g(∇V1ϕβQV2, α)

− η(βQV2)g(ϕV1, α)

Considering lemma 3.2, equation (2.12) and skew symmetry property of T , we have

g(∇V1V2, α) = − cos2 θg(∇V1QV2, α) + g(H∇V1δQV2, ϕRα)

+ g(TV1α, δβQV2)− g(TV1ϕPα, δQV2)

− η(βQV2)g(ϕV1, α)

Finally, from equations (2.8) and (2.17), we yield

g(∇V1V2, α) = − cos2 θg(∇V1QV2, α) + g(H∇V1δQV2, ϕRα)

− 1

λ2
g′((∇F∗)(V1, α), F∗(δβQV2))

+
1

λ2
g′((∇F∗)(V1, ϕPα), F∗(δQV2))

− η(βQV2)g(ϕV1, α).

(4.38)

In similar way, for any V1, V2 ∈ Γ(Dθ) and X ∈ Γ((kerF∗)
⊥) with using (2.2), (2.4), (2.7)

and (3.19), we get

g(∇V1V2, X) = g(∇V1βQV2, ϕX)− g(∇V1δQV2, ϕX).
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From equation (2.2), (2.4), (2.7) and (3.19), (2.11) we can write

g(∇V1V2, X) = −g(∇V1β
2QV2, X)− g(∇V1δβQV2, X)

+ g(TV1δQV2, BX) + g(H∇V1δQV2, CX)

+ η(βQV2)g(V1, BX)

At last, considering equation (2.8), (2.17), (2.12), and lemma 3.2, we have

g(∇V1V2, X) =
1

λ2
g′((∇F∗)(V1, BX), F∗(δQV2))

− cos2 θ
1

λ2
g′((∇F∗)(V1, QV2), F∗(X))

− g(H∇V1δβQV2, X) + g(H∇V1δQV2, CX)

+ η(βQV2)g(V1, BX).

(4.39)

Finally, from equation (4.38) and (4.39), we get the results (i) and (ii) of theorem 4.7. This

completes the proof of theorem.

Theorem 4.8. Let F : (M,ϕ, ξ, η, g) → (N, g′) be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N . Then D⊥ is not defined totally geodesic foliation

on M .

Proof. On considering Z,W ∈ Γ(D⊥) and since W and ξ are orthogonal, we have

g(∇ZW, ξ) = −g(W,∇Zξ)

Taking account the fact of equation (2.5), we have

g(∇ZW, ξ) = −g(Z,W ).

For Z,W ∈ Γ(D⊥),−g(Z,W ) ̸= 0, that is g(∇ZW, ξ) ̸= 0. Hence, the distribution is not

totally geodesic.

Theorem 4.9. Let F : (M,ϕ, ξ, η, g) → (N, g′) be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N . Then D⊥⊕ < ξ > defines totally geodesic foliation

if and only if

(i) 1
λ2 g

′((∇F∗)(Z1, βα), F∗(ϕZ2)) = g(H∇Z1ϕZ2, δQα)

(ii) 1
λ2 g

′((∇F∗)(Z1, BX), F∗(ϕZ2)) = g(H∇Z1CX,ϕZ2)

for any Z1, Z2 ∈ Γ(D⊥⊕ < ξ >), X ∈ Γ((kerF∗)
⊥) and α ∈ Γ(DT ⊕Dθ).
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Proof. On using equations (2.2), (2.4), (2.7), we can write

g(∇Z1Z2, α) = g(∇Z1ϕZ2, ϕα),

for any Z1, Z2 ∈ Γ(D⊥⊕ < ξ >) and α ∈ Γ(DT ⊕Dθ). On using the fact that βPα+ βQα =

βα with equations (3.18), (2.11), we get

g(∇Z1Z2, α) = g(TZ1ϕZ2, βα) + g(H∇Z1ϕZ2, δQα).

Considering equation (2.8) and (2.17) and use anti-symmetric property of T , we have

g(∇Z1Z2, α) =
1

λ2
g′((∇F∗)(Z1, βα), F∗(ϕZ2)) + g(H∇Z1ϕZ2, δQα). (4.40)

On the other hand, for any Z1, Z2 ∈ Γ(D⊥) and X ∈ Γ((kerF∗)
⊥) with using equations (2.2),

(2.4), (2.7) and (3.21), we have

g(∇Z1Z2, X) = −g(∇Z1BX,ϕZ2)− g(∇Z1CX,ϕZ2).

Considering equations (2.8), (2.11), (2.12) and (2.17), we can write

g(∇Z1Z2, X) =
1

λ2
g′((∇F∗)(Z1, BX), F∗(ϕZ2))− g(H∇Z1CX,ϕZ2). (4.41)

From equations (4.40) and (4.41), the proof of the theorem is complete.

Theorem 4.10. Let F : (M,ϕ, ξ, η, g) → (N, g′) be QHSC submersion from a Kenmotsu

manifold onto a Riemannian manifold N . Then the vertical distribution (kerF∗) defines

totally geodesic foliation if and only if

cos2 θ
1

λ2
g′((∇F∗)(Y1, QY2), F∗(X)) +

1

λ2
g′((∇F∗)(Y1, βPY2), F∗(CX))

= g(V∇Y1βPY2 + TY1δQY2 + TY1δRY2, BX)

+ g(H∇Y1δQY2 +H∇Y1δRY2, CX)− g(H∇Y1δβQY2, X),

for any Y1, Y2 ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥).

Proof. On using (2.2), (2.4) and (2.7) with decomposition (3.18), we have

g(∇Y1Y2, X) = g(∇Y1βPY2 + βQY2 + δQY2 + δRY2, ϕX),
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for any Y1, Y2 ∈ Γ(kerF∗) and X ∈ Γ((kerF∗)
⊥). From equations (2.11), (2.12) and (3.21),

we yield

g(∇Y1Y2, X) = g(V∇Y1βPY2 + TY1δQY2 + TY1δRY2, BX)

+ g(TY1βPY2 +H∇Y1δQY2 +H∇Y1δRY2, CX)

+ g(∇Y1βQY2, ϕX).

Taking with equations (2.4), (2.7) and (3.18), we may have

g(∇Y1Y2, X) = g(V∇Y1βPY2 + TY1δQY2 + TY1δRY2, BX)

+ g(TY1βPY2 +H∇Y1δQY2 +H∇Y1δRY2, CX)

− g(∇Y1β
2QY2, X)− g(∇Y1δβQY2, X).

Consider lemma 3.2 with equations (2.8) and (2.17), we get

g(∇Y1Y2, X) = g(V∇Y1βPY2 + TY1δQY2 + TY1δRY2, BX)

+ g(H∇Y1δQY2 +H∇Y1δRY2, CX)

+ cos2 θg(∇Y1QY2, X)− g(∇Y1δβQY2, X)

− 1

λ2
g′((∇F∗)(Y1, βPY2), F∗(CX)).

Again using (2.8) and (2.17), we finally have

g(∇Y1Y2, X) = g(V∇Y1βPY2 + TY1δQY2 + TY1δRY2, BX)

+ g(H∇Y1δQY2 +H∇Y1δRY2, CX)

+ cos2 θ
1

λ2
g′((∇F∗)(Y1, QY2), F∗X)− g(∇Y1δβQY2, X)

− 1

λ2
g′((∇F∗)(Y1, βPY2), F∗(CX)).

This completes the proof of the theorem.
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