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Abstract. In this paper, our main objective is to study the notion of Clairaut semi-

invariant submersions (CSI− submersions, in short) from Cosymplectic manifolds onto

Riemannian manifolds. We investigate some fundamental results pertaining to the geome-

try of such submersions. We also obtain totally geodesicness conditions for the distributions.

Moreover, we provide a non-trivial example of such Riemannian submersion.
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1. Introduction

Firstly, O’ Neill [16] and Gray [9] separately studied the concept of Riemannian submer-

sions between Riemannian manifolds in the 1960s. Using the notion of Riemannian submer-

sions between almost complex manifolds, Watson [34] studied almost Hermitian submersions.

Further, the concept of anti-invariant submersion was first defined by Sahin [23] from almost

Hermitian manifolds onto Riemannian manifolds. Later, he introduced semi-invariant sub-

mersion [25] from almost Hermitian manifolds onto Riemannian manifolds as a generalization

of holomorphic submersions and anti-invariant submersion. Further, different kinds of Rie-

mannian submersions on different structures have been studied, such as: slant submersions

Received:2022.10.04 Revised:2023.01.08 Accepted:2023.01.15

∗ Corresponding author

Sushil Kumar; sushilmath20@gmail.com; https://orcid.org/0000-0003-2118-4374

Sumeet Kumar; itssumeetkumar@gmail.com; https://orcid.org/0000-0003-1214-5701

Raj Kumar Srivastava; srivastavar666@gmail.com; https://orcid.org/0000-0002-2499-7402

.

83

HTTPS://ORCID.ORG/0000-0003-2118-4374
HTTPS://ORCID.ORG/0000-0003-1214-5701
HTTPS://ORCID.ORG/0000-0002-2499-7402


84 S. KUMAR, S. KUMAR, AND R. K. SRIVASTAVA

[24], semi-slant submersions [17], conformal semi-slant submersion ([12],[20]), hemi-slant Rie-

mannian submersions [31], conformal hemi-slant submersion [11], quasi-bi-slant submersions

[18] (see also [13], [19], [21], [26], [28], [29]) etc.

Presently, the Riemannian submersions have abundant applications in pure mathematics

and physics, for example, Kaluza-Klein theory [7], Yang-Mills theory [8], Supergravity and

superstring theories [10] etc. C. Altafini [2] commenced using the notion of Riemannian

submersions for the modeling and control of redundant robotic chain and proved that Rie-

mannian submersion gives a close relationship between inverse kinematic in robotics and the

pull back vectors.

In the theory of surfaces created by rotating the curves, we note that, for any geodesic

c(c : I1 ⊂ R → N1 on N1) on the rotating surface N1, the product r sinΘ is constant

along geodesic c, where Θ(s) is the angle between c(s) and the meridian curve through c(s),

s ∈ I1, called Clairaut’s theorem [5]. It means that it is independent of s. In 1972, Bishop [5]

applied this idea to the Riemannian submersions and introduced the concept of Clairaut sub-

mersion. Afterwards, Clairaut submersions have been studied in Spacelike spaces, Timelike

and Lorentzian spaces ([15], [32], [33]) and its applications in Static spacetimes [1]. Later on

this notion has been generalized in [3] and [15]. Kumar et al., in [14], introduce the notion

of Clairaut semi-invariant Riemannian map and Gupta and Singh in [22] initiate the notion

of Clairaut semi-invariant submersion from Kähler manifold and investigate some interesting

geometric properties of these submersions.

In the present paper, our focus is on investigating the notion of the CSI−submersions

from Cosymplectic manifolds onto Riemannian manifolds. The paper is organized as fol-

lows: In the second section, we gather main notions and formulae for other sections. In the

third section, we give the definition of the CSI−submersions from Cosymplectic manifolds

onto Riemannian manifolds. We investigate differential geometric properties of such submer-

sions. In the last section, we illustrate a non-trivial example of the CSI−submersions from

Cosymplectic manifolds onto Riemannian manifolds.

2. Preliminaries

A (2n + 1)-dimensional smooth manifold N1 is said to have an almost contact structure

[26] if there exist on N1, a tensor field ϕ of type (1, 1), a vector field ξ and 1-form η such that

ϕ2 = −I + η ⊗ ξ, η ◦ ϕ = 0, ϕξ = 0, (2.1)
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g1(ξ, ξ) = η(ξ) = 1. (2.2)

If there exists a Riemannian metric g1 on an almost contact manifold N1 satisfying:

g1(ϕZ1, ϕZ2) = g1(Z1, Z2)− η(Z1)η(Z2), (2.3)

g1(Z1, ϕZ2) = −g1(ϕZ1, Z2),

g1(Z1, ξ) = η(Z1), (2.4)

where Z1, Z2 are any vector fields on N1. Then N1 is called almost contact metric manifold

[6] with almost contact structure (ϕ, ξ, η) and is represented by (N1, ϕ, ξ, η, g1).

An almost contact structure (ϕ, ξ, η) is said to be normal if the almost complex structure

J on the product manifold N1 ×R is given by

J(Z1,F
d

dt
) = (ϕZ1 −Fξ, η(Z1)

d

dt
), (2.5)

where J2 = −I and F is a differentiable function on N 1 × R that has no torsion, i.e., J is

integrable. The form for normality in terms of ϕ, ξ and η is given by [ϕ, ϕ] + 2dη ⊗ ξ = 0 on

N1, where [ϕ, ϕ] is the Nijenhuis tensor of ϕ . Further, the fundamental 2-form Φ is defined

by Φ(Z1, Z2) = g1(Z1, ϕZ2).

A manifold N1 with the structure (ϕ, ξ, η, g1) is said to be Cosymplectic [26] if

(∇Z1ϕ)Z2 = 0 (2.6)

for any vector fields Z1, Z2 on N1, where ∇ stands for the Riemannian connection of the

metric g1 on N1. For a Cosymplectic manifold, we have

∇Z1ξ = 0 (2.7)

for any vector field Z1 on N1.

O’Neill’s tensors [16] T and A are given by

AX1X2 = H∇HX1VX2 + V∇HX1HX2, (2.8)

TX1X2 = H∇VX1VX2 + V∇VX1HX2 (2.9)

for any X1, X2 on N1. For vertical vector fields Y1, Y2, the tensor field T has the symmetry

property, that is,

TY1Y2 = TY2Y1, (2.10)

while for horizontal vector fields X1, X2, the tensor field A has alternation property, that is

AX1X2 = −AX2X1. (2.11)
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From the equations (2.8) and (2.9), we have

∇Y1Y2 = TY1Y2 + V∇Y1Y2, (2.12)

∇Y1Z1 = TY1Z1 +H∇Y1Z1, (2.13)

∇Z1Y1 = AZ1Y1 + V∇Z1Y1, (2.14)

∇Z1Z2 = H∇Z1Z2 +AZ1Z2 (2.15)

for all Y1, Y2 ∈ Γ(kerF∗) and Z1, Z2 ∈ Γ(kerF∗)
⊥, where H∇Y1Z1 = AZ1Y1, if Z1 is basic.

It can be easily seen that T acts on the fibers as the second fundamental form, while A

acts on the horizontal distribution and measures the obstruction to the integrability of this

distribution.

The Riemannian submersion F between two Riemannian manifolds is totally geodesic if

(∇F∗)(U1, U2) = 0 ∀ U1, U2 ∈ Γ(TN1).

Totally umbilical Riemannian submersion is a Riemannian submersion with totally um-

bilical fibers ([4], [5]) if

TZ1Z2 = g1(Z1, Z2)H (2.16)

for all Z1, Z2 ∈ Γ(kerF∗), where H denotes the mean curvature vector field of fibers.

Let F : (N1, g1) → (N2, g2) be a Riemannian submersion between Riemannian manifolds.

The differential map F∗ of F can be viewed as a section of the bundleHom(TN1, F
−1TN2) →

N1, where F
−1TN2 is the pullback bundle whose fibers at q ∈ N1 is (F

−1TN2)q = TF (q)N2,q ∈

N1. The bundle Hom(TN1, F
−1TN2) has a connection ∇ induced from the Levi-Civita con-

nection ∇N1 and the pullback connection ∇F . Then the second fundamental form of F is

given by

(∇F∗)(V1, V2) = ∇F
V1
F∗(V2)− F∗(∇N1

V1
V2) (2.17)

for the vector fields V1, V2 ∈ Γ(TN1).

3. The CSI−submersions from Cosymplectic manifolds

In the theory of Riemannian submersions, Bishop [5] initiated the concept of Clairaut

submersion as: a submersion F : (N1, g1) → (N2, g2) is called a Clairaut submersion if there

exist a function r : N1 → R+ in such a way that any geodesic that makes an angle Θ with a

horizontal subspace, r sinΘ is constant.

On the other side, Sahin [27] generalized the concept of Clairaut submersion and initiated

the study of Clairaut Riemannian maps and investigated its geometric properties.
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Theorem 3.1. [5] Let F : (N1, g1) → (N2, g2) be a Riemannian submersion with connected

fibers. Then, F is a Clairaut Riemannian submersion with r = eh if each fiber is totally

umbilical and has the mean curvature vector field H = −∇h, where ∇h is the gradient of the

function h with respect to g1.

Definition 3.1. [26] Let F be a Riemannian submersion from an almost contact metric

manifold (N1, ϕ, ξ, η, g1) onto a Riemannian manifold (N2, g2). Then we say that F is a

semi-invariant submersion if there is a distribution D1 ⊆ kerF∗ such that

kerF∗ = D1 ⊕D2, ϕ(D1) = D1, ϕ(D2) ⊆ (kerF∗)
⊥,

where D1 and D2 mutually orthogonal distributions in (kerF∗).

Let µ denotes the complementary orthogonal subbundle to ϕ(D2) in (kerF∗)
⊥. Then we

have

(kerF∗)
⊥ = ϕ(D2)⊕ µ.

Obviously µ is an invariant subbundle of (kerF∗)
⊥ with respect to the contact structure ϕ.

We say that a semi-invariant submersion F : N1 → N2 admits a vertical Reeb vector

field ξ if it is tangent to (kerF∗) and it admits horizontal Reeb vector field ξ it is normal

to (kerF∗). One can easily observe that µ contains the Reeb vector field in case of the

Riemannian submersion admits horizontal Reeb vector field.

We now define the notion of CSI− submersion in contact manifolds as follows:

Definition 3.2. A semi-invariant submersions from a Cosymplectic manifold (N1, ϕ, ξ, η, g1)

onto a Riemannian manifold (N2, g2) is called CSI− submersion if it satisfies the condition

of Clairaut Riemannian submersion.

For any vector field W1 ∈ Γ(kerF∗), we put

W1 = PW1 +QW1, (3.18)

where P and Q are projection morphisms [4] of kerF∗ onto D1 and D2, respectively.

For U1 ∈ (kerF∗), we get

ϕU1 = ψU1 + ωU1, (3.19)

where ψU1 ∈ Γ(D1) and ωU1 ∈ Γ(ϕD2). Also for V2 ∈ Γ(kerF∗)
⊥, we get

ϕV2 = BV2 + CV2, (3.20)

where BV2 ∈ Γ(D2) and CV2 ∈ Γ(µ).
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Definition 3.3. [30] Let F be a CSI− submersion from an almost contact metric mani-

fold (N1, ϕ, ξ, η, g1) onto a Riemannian manifold (N2, g2). If µ = {0} or µ =< ξ >, i.e.,

(kerF∗)
⊥ = ϕ(D2) or (kerF∗)

⊥ = ϕ(D2)⊕ < ξ > respectively, then we call ϕ a Lagrangian

Riemannian submersion. In this case, for any horizontal vector field Z1, we have

BZ1 = ϕZ1 and CZ1 = 0. (3.21)

Lemma 3.1. Let F be a CSI− submersion from a Cosymplectic manifold (N1, ϕ, ξ, η, g1)

onto a Riemannian manifold (N2, g2) admitting vertical or horizontal Reeb vector field. Then,

we get

V∇W1ψW2 + TW1ωW2 = BTW1W2 + ψV∇W1W2, (3.22)

TW1ψW2 +H∇W1ωW2 = CTW1W2 + ωV∇W1W2, (3.23)

V∇U1BU2 +AU1CU2 = BH∇U1U2 + ψAU1U2, (3.24)

AU1BU2 +H∇U1CU2 = CH∇U1U2 + ωAU1U2, (3.25)

V∇W1BU1 + TW1CU1 = ψTW1U1 +BH∇W1U1, (3.26)

TW1BU1 +H∇W1CU1 = ωTW1U1 + CH∇W1U1, (3.27)

V∇U1ψW1 +AU1ωW1 = BAU1W1 + ψV∇U1W1, (3.28)

AU1ψW1 +H∇U1ωW1 = CAU1W1 + ωV∇U1W1, (3.29)

where W1,W2 ∈ Γ(kerF∗) and U1, U2 ∈ Γ(kerF∗)
⊥.

Proof. Using (2.12)−(2.15),(3.19) and (3.20), we get Lemma 3.1.

Corollary 3.1. Let F be a Lagrangian submersion from a Cosymplectic manifold (N1, ϕ, ξ, η,

g1) onto a Riemannian manifold (N2, g2) admitting vertical or horizontal Reeb vector field.

Then we get

V∇V1ψV2 + TV1ωV2 = BTV1V2 + ψV∇V1V2, TV1ψV2 +H∇V1ωV2 = ωV∇V1V2,

V∇Y1BY2 = BH∇Y1Y2 + ψAY1Y2,AY1BY2 = ωAY1Y2,

V∇V1BY1 = ψTV1Y1 +BH∇V1Y1, TV1BY1 = ωTV1Y1,

V∇Y1ψV1 +AY1ωV1 = BAY1V1 + ψV∇Y1V1,AY1ψV1 +H∇Y1ωV1 = ωV∇Y1V1,

where V1, V2 ∈ Γ(kerF∗) and Y1, Y2 ∈ Γ(kerF∗)
⊥.
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Lemma 3.2. Let F be a CSI− submersion from a Cosymplectic manifold (N1, ϕ, ξ, η, g1)

onto a Riemannian manifold (N2, g2) admitting vertical or horizontal Reeb vector field. Then

we have

TZ1ξ = 0,AZ2ξ = 0 (3.30)

for Z1 ∈ Γ(kerF∗)
⊥ and Z2 ∈ Γ(kerF∗)

⊥.

Proof. Using (2.12)−(2.15) and (2.7), we get Lemma 3.2.

Lemma 3.3. Let F be a CSI− submersion from a Cosymplectic manifold (N1, ϕ, ξ, η, g1)

onto a Riemannian manifold (N2, g2). If γ : I2 ⊂ R → N1 is a regular curve and Z1(t) and

Z2(t) are the vertical and horizontal components of the tangent vector field
.
γ = E of γ(t),

respectively, then γ is a geodesic if and only if along γ the following equations hold:

V∇ .
γBZ2 + V∇ .

γψZ1 + (TZ1 +AZ2)CZ2 + (TZ1 +AZ2)ωZ1 = 0, (3.31)

H∇ .
γCZ2 +H∇ .

γωZ1 + (TZ1 +AZ2)BZ2 + (AZ2 + TZ1)ψZ1 = 0. (3.32)

Proof. Let γ : I2 → N1 be a regular curve on N1. Since
.
γ(t) = Z1(t) + Z2(t), where

Z1(t) and Z2(t) are the vertical and horizontal components of
.
γ(t). Using (2.6),(2.12)−(2.15),

(3.19) and (3.20), we have

ϕ∇ .
γ
.
γ = ∇ .

γϕ
.
γ

= ∇Z1ψZ1 +∇Z1ωZ1 +∇Z2ψZ1 +∇Z2ωZ1 +

∇Z1BZ2 +∇Z1CZ2 +∇Z2BZ2 +∇Z2CZ2,

= V∇ .
γBZ2 + V∇ .

γψZ1 + (TZ1 +AZ2)CZ2 + (TZ1 +AZ2)ωZ1 +

H∇ .
γCZ2 +H∇ .

γωZ1 + (TZ1 +AZ2)BZ2 + (AZ2 + TZ1)ψZ1.

From above, vertical and horizontal components are:

Vϕ∇ .
γ
.
γ = V∇ .

γBZ2 + V∇ .
γψZ1 + (TZ1 +AZ2)CZ2 + (TZ1 +AZ2)ωZ1,

Hϕ∇ .
γ
.
γ = H∇ .

γCZ2 +H∇ .
γωZ1 + (TZ1 +AZ2)BZ2 + (AZ2 + TZ1)ψZ1.

Thus γ is a geodesic on N1 if and only if Vϕ∇ .
γ
.
γ = 0 and Hϕ∇ .

γ
.
γ = 0.



90 S. KUMAR, S. KUMAR, AND R. K. SRIVASTAVA

Theorem 3.2. Let F be a Clairaut semi-invariant submersion from a Cosymplectic manifold

(N1, ϕ, ξ, η, g1) onto a Riemannian manifold (N2, g2). Then F is a CSI− submersion with

r = eh if and only if

g1(∇h, Z2)||Z1||2 = g1(V∇ .
γBZ2, ψZ1) + g1((TZ1 +AZ2)CZ2, ψZ1) +

g1(H∇ .
γCZ2, ωZ1) + g1((TZ1 +AZ2)BZ2, ωZ1),

where γ : I2 → N1 is a geodesic on N1, Z1(t) and Z2(t) are vertical and horizontal compo-

nents of
.
γ(t), respectively.

Proof. Let γ : I2 → N1 be a geodesic on N1 with Z1(t) = V .
γ(t) and Z2(t) = H .

γ(t).

Let Θ(t) denotes the angle in [0, π] between
.
γ(t) and Z2(t). Assuming υ = || .γ(t)||,2 then we

get

g1(Z1(t), Z1(t)) = υ sin2Θ(t), (3.33)

g1(Z2(t), Z2(t)) = υ cos2Θ(t). (3.34)

Now, differentiating (3.33), we get

d

dt
g1(Z1(t), Z1(t)) = 2υ sinΘ(t) cosΘ(t)

dΘ

dt
,

g1(∇ .
γZ1(t), Z1(t)) = υ cosΘ(t) cosΘ(t)

dΘ

dt
.

Using equations (2.3) and (2.6) in above equation, we get

g1(∇ .
γϕZ1(t), ϕZ1(t)) = υ sinΘ(t) cosΘ(t)

dΘ

dt
. (3.35)

Now we obtain

g1(∇ .
γϕZ1, ϕZ1) = g1(V∇ .

γψZ1, ψZ1) + g1(H∇ .
γωZ1, ωZ1) + (3.36)

g1((TZ1 +AZ2)ψZ1, ωZ1) + g1((TZ1 +AZ2)ωZ1, ψZ1).

Using equations (3.31) and (3.32) in (3.37), we have

g1(∇ .
γϕZ1, ϕZ1) = −g1(V∇ .

γBZ2, ψZ1)− g1((TZ1 +AZ2)CZ2, ψZ1)− (3.37)

g1(H∇ .
γCZ2, ωZ1)− g1((TZ1 +AZ2)BZ2, ωZ1).

From (3.35) and (3.38), we have

υ cosΘ(t) cosΘ(t)
dΘ

dt
= −g1(V∇ .

γBZ2, ψZ1)− g1((TZ1 +AZ2)CZ2, ψZ1)− (3.38)

g1(H∇ .
γCZ2, ωZ1)− g1((TZ1 +AZ2)BZ2, ωZ1).
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Moreover, π is a CSI− Riemannian submersion with r = eh if and only if d
dt(e

h◦γ sinΘ) =

0, i.e., eh◦γ(cosΘdΘ
dt +sinΘdh

dt ) = 0. By multiplying this with non-zero factor υ sinΘ, we have

−υ cosΘ sinΘ
dΘ

dt
= υ sin2Θ

dh

dt
,

υ cosΘ sinΘ
dΘ

dt
= −g1(Z1, Z1)

dh

dt
,

υ cosΘ sinΘ
dΘ

dt
= −g1(∇h,

.
γ)||Z1||2,

υ cosΘ sinΘ
dΘ

dt
= −g1(∇h, Z2)||Y1||2. (3.39)

Thus, from equations (3.39) and (3.39), we have

g1(∇h, Z2)||Z1||2 = g1(V∇ .
γBZ2, ψZ1) + g1((TZ1 +AZ2)CZ2, ψZ1) +

g1(H∇ .
γCZ2, ωZ1) + g1((TZ1 +AZ2)BZ2, ωZ1).

Hence Theorem 3.2 is proved.

Corollary 3.2. Let F be a CSI− submersion from a Cosymplectic manifold (N1, ϕ, ξ, η, g1)

to a Riemannian manifold (N2, g2) admitting horizontal Reeb vector field. Then we get

g1(∇h, ξ) = 0.

Theorem 3.3. Let F be a CSI− submersion from a Cosymplectic manifold (N1, ϕ, ξ, η, g1)

onto a Riemannian manifold (N2, g2) with r = eh, then at least one of the following statement

is true:

(i) h is constant on ϕ(D2),

(ii) the fibers are one-dimensional,

(iii)
F
∇ϕX1F∗(W1) = −W1(h)F∗(ϕX1), for all X1 ∈ Γ(D2),W1 ∈ Γ(µ) and ξ ̸=W1.

Proof. Let F be CSI− submersion from a Cosymplectic manifold onto a Riemannian

manifold. For Y1, Y2 ∈ Γ(D2), using (2.16) and Theorem 3.1, we get

TY1Y2 = −g1(Y1, Y2)gradh. (3.40)

Taking the inner product in (3.40) with ϕX1, we get

g1(TY1Y2, ϕX1) = −g1(Y1, Y2)g1(gradh, ϕX1) (3.41)

for all X1 ∈ Γ(D2).

From (2.3), (2.6) and (3.41), we obtain

g1(∇Y1ϕY2, X1) = g1(Y1, Y2)g1(gradh, ϕX1).
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By using (2.3) and (2.16) in above equation, we have

g1(Y1, X1)g1(gradh, ϕY2) = g1(Y1, Y2)g1(gradh, ϕX1). (3.42)

Taking X1 = Y2 and interchanging the role of Y1 and Y2, we get

g1(Y2, Y2)g1(gradh, ϕY1) = g1(Y1, Y2)g1(gradh, ϕY2). (3.43)

Using (3.42) with X1 = Y1 in (3.43), we have

g1(gradh, ϕY1) =
(g1(Y1, Y2))

2

||Y1||2||Y2||2
g1(gradh, ϕY1). (3.44)

If gradh ∈ Γ(ϕ(D2)), then (3.44) and the equality condition of Schwarz inequality implies

that either h is constant on ϕ(D2) or the fibers are 1-dimensional. This implies the proof of

(i) and (ii).

Now, from (2.15) and (2.16), we get

g1(∇Y1X1,W1) = −g1(Y1, X1)g1(gradh,W1), (3.45)

for all W1 ∈ Γ(µ) and ξ ̸=W1. Using (2.3), (2.6) and (3.45), we have

g1(∇Y1ϕX1, ϕW1) = −g1(Y1, X1)g1(gradh,W1),

which implies

g1(∇ϕX1Y1, ϕW1) = −g1(Y1, X1)g1(gradh,W1). (3.46)

By using (2.14) and (3.46), we have

g1(H∇ϕX1W1, ϕY1) = −g1(ϕY1, ϕX1)g1( gradh,W1).

Also for Riemannian submersion F, we have

g2(F∗(∇N1
ϕX1

W1), F∗(ϕY1)) = −g2(F∗(ϕY1), F∗(ϕX1))g1(gradh,W1). (3.47)

Again, using (2.17) and (3.47), we get

g2(
F
∇ϕX1F∗(W1), F∗(ϕY1)) = −g2(F∗(ϕY1), F∗(ϕX1))g1(gradh,W1),

which implies.

F
∇ϕX1F∗(W1) = −W1(h)F∗(ϕX1). (3.48)

If gradh ∈ Γ(µ)\{ξ}, then (3.48) implies (iii).



INT. J. MAPS MATH. (2023) 6(2):83-98 / CSI−SUBMERSIONS 93

Corollary 3.3. Let F be a CSI− submersion from a Cosymplectic manifold (N1, ϕ, ξ, η, g1)

onto a Riemannian manifold (N2, g2) with r = eh and dim(D2) > 1. Then the fibers of F are

totally geodesic if and only if
F
∇ϕX1F∗(W1) = 0 ∀X1 ∈ Γ(D2) and W1 ∈ Γ(µ).

Lemma 3.4. Let F be a CSI− submersion from a Cosymplectic manifold (N1, ϕ, ξ, η, g1)

onto a Riemannian manifold (N2, g2) with r = eh and dim(D2) > 1. Then
F
∇W1F∗(ϕY1) =

W1(h)F∗(ϕY1) for Y1 ∈ Γ(D2) and W1 ∈ Γ(kerF∗)
⊥\{ξ}.

Proof. Let F be a CSI− submersion from a Cosymplectic manifold onto a Riemann-

ian manifold. From Theorem 3.1, fibers are totally umbilical with mean curvature vector

field H = −gradh, then we get

−g1(∇Y1W1, Y2) = g1(∇Y1Y2,W1),

−g1(∇Y1W1, Y2) = −g1(Y1, Y2)g1(gradh,W1)

for Y1, Y2 ∈ Γ(D2) and W1 ∈ Γ(kerF∗)
⊥\{ξ}.

Using (2.3) and (2.6) in above equation, we get

g1(∇W1ϕY1, ϕY2) = g1(ϕY1, ϕY2)g1(gradh,W1). (3.49)

Since F is CSI− submersion and using (3.49), we have

g2(F∗(∇F
W1
ϕY1), F∗(ϕY2)) = g2(F∗(ϕY1), F∗(ϕY2))g1(gradh,W1). (3.50)

From (2.17) in (3.50), we obtain

g2(
F
∇W1F∗(ϕY1), F∗(ϕY2)) = g2(F∗(ϕY1), F∗(ϕY2))g1(gradh,W1), (3.51)

which implies
F
∇W1F∗(ϕY1) =W1(h)F∗(ϕY1) for Y1 ∈ Γ(D2) and W1 ∈ Γ(kerF∗)

⊥\{ξ}.

Theorem 3.4. Let F be a CSI− submersion with r = eh from a Cosymplectic manifold

(N1, ϕ, ξ, η, g1) onto a Riemannian manifold (N2, g2). If T is not equal to zero identically,

then the invariant distribution D1 cannot defined a totally geodesic foliation on N1.

Proof. For Y1, Y2 ∈ Γ(D1) and U1 ∈ Γ(D2), using (2.3), (2.6), (2.13) and (2.16), we

get

g1(∇Y1Y2, U1) = g1(∇Y1ϕY2, ϕU1),

= g1(TY1ϕY2, ϕU1),

= −g1(Y1, ϕY2)g1(gradh, ϕU1).
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Thus, one can easily obtain the assertion from above equation and the fact that gradh ∈

ϕ(D2).

Theorem 3.5. The CSI− submersion F with r = eh from a Cosymplectic manifold (N1, ϕ, ξ,

η, g1) onto a Riemannian manifold (N2, g2). Then the fibers of F are totally geodesic or the

anti-invariant distribution D2 is one-dimensional.

Proof. The result is quite obvious when we take the fibers of F are totally geodesic.

For second one, since F is a CSI− submersion, then either dim(D2) = 1 or dim(D2) > 1. If

dim(D2) > 1, then we can choose U1, U2 ∈ Γ(D2) such that {U1, U2} is orthonormal. From

(2.13), (3.19) and (3.20), we get

TU1ϕU2 +H∇U1ϕU2 = ∇U1ϕU2,

TU1ϕU2 +H∇U1ϕU2 = BTU1U2 + CTU1U2 + ψV∇U1U2 + ωV∇U1U2.

Taking the inner product above equation with U1, we obtain

g1(TU1ϕU2, U1) = g1(BTU1U2, U1) + g1(ψV∇U1U2, U1). (3.52)

From (2.3), (2.6) and (2.13), we have

g1(TU1U1, ϕU2) = −g1(TU1ϕU2, U1) = g1(TU1U2, ϕU1). (3.53)

Now, using (2.16) and (3.53), we get

g1(TU1U1, ϕU2) = −g1(gradh, ϕU2). (3.54)

From equations (2.16) and (3.54), we obtain

−g1(gradh, ϕU2) = g1(TU1U1, ϕU2) = −g1(TU1ϕU2, U1) = g1(TU1U2, ϕU1). (3.55)

From above equation, we get

g1(gradh, ϕU2) = −g1(TU1U2, ϕU1),

g1(gradh, ϕU2) = g1(U1, U2)g1(gradh, ϕU1),

g1(gradh, ϕU2) = 0.

Thus, we get gradh ⊥ ϕ(D2).

Therefore, the dimension of D2 must be one.
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4. Example

Example 4.1. Taking an Euclidean space N1, given by N1 = {(x1, x2, y1,y2, z) ∈ R5 :

(x1, x2, y1,y2) ̸= (0, 0, 0, 0) and z ̸= 0}. We define the Riemannian metric g1 on N1 defined

as g1 = e2zdx21+ e2zdx22+ e2zdy21 + e2zdy22 + dz2 and the Cosymplectic structure on ϕ and N1

defined as ϕ(x1, x2, y1,y2, z) = (y1,y2,−x1,−x2, z).

Let N2 = {(v1, v2) ∈ R2} be a Riemannian manifold with Riemannian metric g2, given by

g2 = e2zdv21 + dv22. Define a map F : R5 → R2 by

F (x1, x2, y1,y2, z) = (
x2 − y2√

2
, z).

Then, we have

kerF∗ =< X1 = e1, X2 = e2 + e4, X3 = e3 >,

D1 =< X1 = e1, X3 = e3 >,D2 =< X2 = e2 + e4 >,

(kerF∗)
⊥ =< H1 = e2 − e4, H2 = e5 >,

where {e1 = e−z ∂
∂x1

, e2 = e−z ∂
∂x2

, e3 = e−z ∂
∂y1

, e4 = e−z ∂
∂y2

, e7 = ∂
∂z}, {e

∗
1 = ∂

∂v1
, e∗2 = ∂

∂v2
}

are bases on TpN1 and TF (p)N2, respectively, for all p ∈ N1. By direct computations, we

can see that F∗(H1) =
√
2e−ze∗1, F∗(H2) = e∗2, and g1(Hi, Hj) = g2(F∗Hi, F∗Hj) for all

Hi, Hj ∈ Γ(kerF∗)
⊥, i, j = 1, 2. Thus, F is submersion. Moreover, it is easy to see that

ϕX1 = −X3, ϕX2 = −H1 and ϕX3 = X1. Therefore F is a CSI− submersion.

Now, using the Cosymplectic structure, we see that

[e1, e1] = [e2, e2] = [e3, e3] = [e4, e4] = [e5, e5] = 0, (4.56)

[e1, e2] = 0, [e1, e3] = 0, [e1, e4] = 0, [e1, e5] = e1,

[e2, e3] = 0, [e2, e4] = 0, [e2, e5] = e2, [e3, e4] = 0,

[e3, e5] = e3, [e4, e5] = e4.

The Levi-Civita connection ∇ of the metric g1 is given by the Koszul′s formula which is

2g1(∇XY, Z) (4.57)

= Xg1(Y,Z) + Y g1(Z,X)− Zg1(X,Y ) + g1([X,Y ], Z)− g1([Y,Z], X) + g1([Z,X], Y ).
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Using equations (4.56) and (4.57), we obtain

∇e1e1 = ∇e2e2 = ∇e3e3 = ∇e4e4 = − ∂

∂z
, (4.58)

∇e1e2 = ∇e1e3 = ∇e1e4 = ∇e2e1 = ∇e2e3 = ∇e2e4 = 0,

∇e3e1 = ∇e3e2 = ∇e3e4 = ∇e4e1 = ∇e4e2 = ∇e4e3 = 0.

∇e1e5 = e1,∇e2e5 = e2,∇e3e5 = e3,∇e4e5 = e4,∇e5e5 = 0.

Therefore, we have

∇X1X1 = ∇e1e1 = − ∂

∂z
,∇X2X2 = ∇e2+e4e2 + e4 = −2

∂

∂z
, (4.59)

∇X3X3 = ∇e3e3 = −2
∂

∂z
,∇X1X2 = ∇e1e2 = ∇X1X3 = ∇e1e3 = 0,

∇X2X3 = ∇e2e3 = 0,∇X2X1 = ∇e2e1 = 0,∇X3X1 = ∇e3e1 = 0,

∇X3X2 = ∇e3e2 + e4 = 0.

Thus, we have

TV V = Tλ1X1+λ2X2+λ3X3λ1V1 + λ2V2 + λ3V3, λ1, λ2, λ3 ∈ R,

TV V = λ21TX1X1 + λ22TX2X2 + λ23TX3X3 + (4.60)

λ1λ2TX1X2 + λ1λ3TX1X3 + λ2λ3TX2X3 +

λ1λ2TX2X1 + λ1λ3TX3X1 + λ2λ3TX3X2.

Using equations (2.12) and (4.59), we obtain

TX1X1 = − ∂

∂z
, TX2X2 = −2

∂

∂z
, TX3X3 = − ∂

∂z
, (4.61)

TX1X2 = 0, TX1X3 = 0, TX2X3 = 0, TX2X1 = 0,

TX2X3 = 0, TX3X1 = 0.

Now using equations (4.60) and (4.61), we get

TV V = −(λ21 + 2λ22 + λ23)
∂

∂z
. (4.62)

Since X = λ1X1 + λ2X2 + λ3X3, so g1(λ1V1 + λ2V2 + λ3V3, λ1V1 + λ2V2 + λ3V3) = λ21 +

2λ22 + λ23. For a smooth function h on R5, the ∇h w. r. t. the metric g1 is given by ∇h =

e−2z ∂h
∂x1

∂
∂x1

+ e−2z ∂h
∂x2

∂
∂x2

+ e−2z ∂h
∂y1

∂
∂y1

+ e−2z ∂h
∂y2

∂
∂y2

+ ∂h
∂z

∂
∂z . Hence ∇h = ∂

∂z for the function

h = z. Then one can easily find that TV V = −g1(V, V )∇h, thus by Theorem 3.1, the map F

is a CSI− submersion from Cosymplectic manifold onto Riemannian manifold.
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[30] Taştan, HM. (2014). On Lagrangian submersions. Hacet. J. Math. Stat. 43(6), 993-1000.
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