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CONFORMAL η-RICCI SOLITONS IN δ- LORENTZIAN TRANS

SASAKIAN MANIFOLDS

MOHD DANISH SIDDIQI∗

Abstract. The object of the present paper is to study the δ-Lorentzian Trans Sasakian

manifolds admitting the conformal η-Ricci Solitons and gradient conformal Ricci soliton. It

is shown that a symmetric second order covariant tensor in a δ-Lorentzian Trans Sasakian

manifold is a constant multiple of metric tensor. Also an example of conformal η-Ricci

soliton in 3-dimensional δ-Lorentzian Trans Sasakian manifold is provided in the region

where δ-Lorentzian Trans-Sasakian manifold expanding.

1. Introduction

In recent years the pioneering works of R. Hamilton [22] and G. Perelman [34] towards

the solution of the Poincare conjecture in dimension 3 have produced a flourishing activity in

the research of self similar solutions, or solitons, of the Ricci flow. The study of the geometry

of solitons, in particular their classification in dimension 3, has been essential in providing a

positive answer to the conjecture; however in higher dimension and in the complete, possibly

noncompact case, the understanding of the geometry and the classification of solitons seems

to remain a desired goal for a not too proximate future.
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In the generic case a soliton structure on the Riemannian manifold (M, g) is the choice of

a smooth vector field X on M and a real constant λ satisfying the structural requirement

Ric+
1

2
LXg = λg, (1.1)

where Ric is the Ricci tensor of the metric g and LXg is the Lie derivative of this latter in

the direction of X. In what follows we shall refer to λ as to the soliton constant. The soliton

is called expanding, steady or shrinking if, respectively, λ > 0, λ = 0 or λ > 0. When X is

the gradient of a potential ψ ∈ C∞(M), the soliton is called a gradient Ricci soliton [13] and

the previous equation (1.1) takes the form

∇∇ψ = S + λg. (1.2)

Both equations (1.1) and (1.2) can be considered as perturbations of the Einstein equation

Ric = λg. (1.3)

and reduce to this latter in case X or ∇ψ are Killing vector fields. When X = 0 or ψ is

constant we call the underlying Einstein manifold a trivial Ricci soliton.

Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by

LV g + 2S + 2λ = 0, (1.4)

where S is the Ricci tensor, LV is the Lie derivative along the vector field V on M and

λ is a real scalar. Ricci soliton is said to be shrinking, steady or expanding according as

λ < 0, λ = 0 and λ > 0, respectively.

It is well know fact that, if the potential vector filed ψ is zero or Killing then the Ricci

soliton is an Einstein real hypersurfaces on non-flat complex soace forms [11]. Motivated

by this in 2009, J.T. Cho and M. Kimura [12] introduced the notion of η-Ricci solitons and

gave a classification of real hypersurfaces in non-flat complex space forms admitting η-Ricci

solitons.

Definition 1.2. An η-Ricci soliton (g, V, λ, µ) on a Riemannian manifold is defined by

LXg + 2S + 2λg + 2µη ⊗ η = 0, (1.5)

where S is the Ricci tensor, LX is the Lie derivative along the vector field X on M and

λ is a real scalar. In particular µ = 0 then the data (g, ξ, λ) is a Ricci soliton.

In [19], A.E. Fischer introduced a new concept called conformal Ricci flow which is a
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variation of the classical Ricci flow equation that modifies the unit volume constraint of that

equation to a scalar curvature constraint. Since the conformal geometry plays an important

role to constrain the scalar curvature and the equations are the vector field sum of a conformal

flow equation and a Ricci flow equation, the resulting equations are named as the conformal

Ricci flow equations. These new equations are given by

∂t

∂t
= −2S −

(
p+

2

n

)
g, (1.6)

where R(g) = −1 and p is a non-dynamical scalar field(time dependent scalar field), R(g) is

the scalar curvature of the manifold and n is the dimension of the manifold M .

The conformal Ricci flow equations are analogous to the Navier-Stokes equations of fluid

mechanics and because of this analogy the time dependent scalar field p is called a conformal

pressure and, as for the real physical pressure in fluid mechanics that serves to maintain

the incompressibility of the fluid, the conformal pressure serves as a Lagrange multiplier to

conformally deform the metric flow so as to maintain the scalar curvature constraint. The

equilibrium points of the conformal Ricci flow equations are Einstein metrics with Einstein

constant −1n . Thus the conformal pressure p is zero at an equilibrium point and positive

otherwise.

In 2015, N. Basu and A. Bhattacharyya [1] introduced the notion of conformal Ricci

soliton and the equation is as follows

LV g + 2S +

[
2λ−

(
p+

2

n

)]
g = 0, (1.7)

where λ is a constant.

Therefore, It is an interesting and natural to see the condition in case of conformal η-Ricci

soliton. From equations (1.5) and (1.7) we are introducing the notion of conformal η-Ricci

soliton by the following equation

LV g + 2S +

[
2λ−

(
p+

2

n

)]
g + 2µη ⊗ η = 0, (1.8)

where S is the Ricci tensor, LX is the Lie derivative along the vector field X on M and λ

is a real scalar. In particular µ = 0 then the data (g, ξ, λ) is a conformal-Ricci soliton [1].

The theory of differentiable manifolds with Lorentizain metric is a natural and interesting

topic in differential geometry. In [24], T. Ikawa and M. Erdogan studied Lorentzian Sasakian

manifold. Lorentzian Kenmotsu manifold introduced by Mihai et al. [29] and K. Kenmotsu

[25]. Also Lorentzian para contact manifolds were introduced by K. Matsumoto [28]. Trans

Lorentzian para Sasakian manifolds have been used by H. Gill and K. K. Dube [21]. In ([48]
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[49]) A. Yıldız et al. studied Lorentzian α- Sasakian also Lorentzian-Sasakian manifolds and

Lorentzian β-Kenmotsu manifold studied by Funda et al. in [47]. After that in 2011 S. S

Pujar and V. J. Khairnar [35] have initiated the study of Lorentzian Trans-Sasakian mani-

folds and studied the some basic results with some of its properties. Earlier to this , S. S.

Pujar [36] has initiated the study of δ-Lorentzian α Sasakian manifolds. In [16 ] U. C. De

also studied properties of curvatures in Lorentzian Trans Sasakian manifolds.

The study of manifolds with indefinite metrics is of interest from the standpoint of physics

and relatively. In 1969, Takahashi [42] has introduced the notion of almost contact metric

manifolds equipped with pseudo Riemannian metric. These indefinite almost conatct metric

manifolds and indefinite Sasakian manifolds are known as (ε)-almost contact metric mani-

folds [46]. The concept of (ε)-Sasakian manifolds was initiated by Bejancu and Duggal [4].

U. C. De and A. Sarkar [14] studied the notion of (ε)-Kenmotsu manifolds. S.S. Shukla and

D. D. Singh [38] extended the study to (ε)-Trans-Sasakian manifolds with indefnite metric.

Siddiqi et al. [39] also studied some properties of Indefinite trans-Sasakian manifolds which

is closely related to this topic. The semi-Riemannian manifolds has the index 1 and the

structure vector field ξ is always a time like. This motivated the Thripathi and others [43]

to introduced (ε)-almost para contact structure where the vector filed ξ is space like or time

like according as (ε) = 1 or (ε) = −1.

When M has a Lorentzian metric g, that is, a symmetric non degenerate (0, 2) tensor

field of index 1, then M is called a Lorentzian manifold. Since the Lorentzian metric is of

index 1, Lorentzian manifold M has not only spacelike vector fields but also timelike and

lightlike vector fields. This difference with the Riemannian case give interesting properties

on the Lorentzian manifold. A differentiable manifold M has a Lorentzian metric if and

only if M has a 1- dimensional distribution. Hence odd dimensional manifold is able to have

a Lorentzian metric. Inspired by the above results In 2014, S. M Bhati [2] introduced the

notion of δ-Lorentzian Trans Sasakian manifolds.

In 1925, Levy [26] proved that a second order parallel symmetric non-sigular tensor in real

space forms is proportional the metric tensor. Later, R. Sharma [37] initiated the study of

Ricci solitons in contact Riemannian geometry . After that, many authors extensively studied

Ricci soliton (see [8], [9], [10], [23], [30], [31], [40], [41]). The study of η-Ricci solitons in (ε)-

almost paracontact metric manifolds have been studied by A. M. Blaga et al. [7]. Recently,

A. M. Blaga and various others authors also have been studied η-Ricci solitons in manifolds
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with different structures (see [5], [6], [37]). Recently K. Venu et al. [45] study the η-Ricci

solitns in trans-Sasakian maanifold. In 2016, T. Dutta et al. [17] studied conformal Ricci

soliton in Lorentzian α-Sasakian manifols. It is natural and interesting to study Conformal η-

Ricci soliton in δ-Lorentzian Trans-Sasakian manifolds. In this paper we derive the condition

for a 3 dimensional δ-Lorentzian Trans-Sasakian manifold as a confromal η-Ricci soliton and

derive expression for the scalar curvature. Moreover, in the last section studied the gradient

conformal Ricci soliton for a 3 dimensional δ-Lorentzian Trans-Sasakian manifolds.

2. Preliminaries

Let M be an δ-almost contact metric manifold equipped with δ-almost contact metric

structure (φ, ξ, η, g, δ) consisting of a (1, 1) tensor field φ, a vector field ξ, a 1-form η and an

indefinite metric g such that

φ2 = X + η(X)ξ, η(ξ) = −1, η ◦ φ = 0, φξ = 0, (2.9)

g(φX, φY ) = g(X,Y ) + δη(X)η(Y ), η(X) = δg(X, ξ), g(ξ, ξ) = −δ, (2.10)

for all X,Y ∈ M , where δ is such that δ2 = 1 so that δ = ±1. The above structure

(φ, ξ, η, g, δ) on M is called the δ Lorentzian structure on M . If δ = 1 and this is usual

Lorentzian structure [35] on M , the vector field ξ is the time like [43], that is M contains a

time like vector field. In [44], Tanno classified the connected almost contact metric manifold.

In [20], Grey and Harvella was introduced the classification of almost Hermitian manifolds,

there appears a class W4 of Hermitian manifolds which are closely related to the conformal

Kaehler manifolds. The class C6⊕C5 [32] coincides with the class of trans-Sasakian structure

of type (α, β). In fact, the local nature of the two sub classes, namely C6 and C5 of trans-

Sasakian structures are characterized completely [27].

An almost contact metric structure on M is called a trans-Sasakian (see [3], [32]) if

(M × R, J,G) belongs to the class W4, where J is the almost complex structure on M × R

defined by

J

(
X, f

d

dt

)
=

(
φ(X)− fξ, η(X)

d

dt

)
for all vector fields X on M and smooth functions f on M ×R and G is the product metric

on M ×R. This may be expressed by the condition

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX) (2.11)



20 MOHD DANISH SIDDIQI∗

for any vector fields X and Y on M , ∇ denotes the Levi-Civita connection with respect to g,

α and β are smooth functions on M . The existence of condition (2.3) is ensure by the above

discussion.

With the above literature now we define the δ-Lorentzian trans-Sasakian manifolds [2] as

follows.

Definition 2.1. A δ-Lorentzian manifold with structure (φ, ξ, η, g, δ) is said to be δ-Lorentzian

trans-Sasakian manifold of type (α, β) if it satisfies the condition

(∇Xφ)Y = α(g(X,Y )ξ − δη(Y )X) + β(g(φX, Y )ξ − δη(Y )φX). (2.12)

for any vector fields X and Y on M .

If δ = 1, then the δ-Lorentzian trans Sasakian manifold is the usual Lorentzian trans

Sasakian manifold of type (α, β) [32]. δ-Lorentzian trans Sasakian manifold of type (0, 0),

(0, β) (α, 0) are the Lorentzian cosymplectic, Lorentzian β-Kenmotsu and Lorentzian α-

Sasakian manifolds respectively. In particular if α = 1, β = 0 and α = 0, β = 1, the

δ-Lorentzian trans Sasakian manifolds reduces to δ-Lorentzian Sasakian and δ-Lorentzian

Kenmotsu manifolds respectively. Form (2.12), we have

∇Xξ = δ {−αφ(X)− β(X + η(X)ξ} , (2.13)

and

(∇Xη)Y = αg(φX, Y ) + β[g(X,Y ) + δη(X)η(Y )]. (2.14)

In a δ-Lorentzian trans Sasakian manifold M , we have the following relations:

R(X,Y )ξ = (α2 + β2)[η(Y )X − η(X)Y ] + 2αβ[η(Y )φX − η(X)φY ] (2.15)

+δ[(Y α)φX − (Xα)φY + (Y β)φ2X − (Xβ)φ2Y ]

S(X, ξ) = [((n− 1)(α2 + β2)− (ξβ)]η(X) + δ((φX)α) + (n− 2)δ(Xβ), (2.16)

Qξ = δ(n− 1)(α2 + β2)− (ξβ))ξ + δφ(gradα)− δ(n− 2)(gradβ), (2.17)

where R is curvature tensor, while Q is the Ricci operator given by S(X,Y ) = g(QX,Y ).

Further in an δ-Lorentzian trans Sasakian manifold , we have

δφ(gradα) = δ(n− 2)(gradβ), (2.18)

2αβ − δ(ξα) = 0. (2.19)
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Using (2.15) and (2.18), for constants α and β , we have

R(ξ,X)Y = (α2 + β2)[δg(X,Y )ξ − η(Y )X], (2.20)

R(X,Y )ξ = (α2 + β2)[η(Y )X − η(X)Y ], (2.21)

η(R(X,Y )Z) = δ(α2 + β2)[g(Y, Z)η(X)− g(X,Z)η(Y )], (2.22)

S(X, ξ) = [((n− 1)(α2 + β2)− δ(ξβ)]η(X), (2.23)

Qξ = [(n− 1)(α2 + β2)− (ξβ)]ξ. (2.24)

An important consequence of (2.21) is that ξ is a geodesic vector field.

∇ξξ = 0. (2.25)

For arbitrary vector field X, we have that

dη(ξ,X) = 0. (2.26)

The ξ-sectional curvature Kξ of M is the sectional curvature of the plane spanned by ξ and

a unit vector field X. From (2.21), we have

Kξ = g(R(ξ,X), ξ,X) = (α2 + β2)− δ(ξβ). (2.27)

It follows from (2.27) that ξ-sectional curvature does not depend on X.

3. conformal η-solitons on (M,φ, ξ, η, g, δ)

In the study of the conformal η-Ricci soliton equation we will consider certain assumptions,

one essential condition being ∇ξ = Iξ(M)+η⊗ξ which naturally arises in different geometry

of δ-Lorentzian trans-Sasakian manifolds.

An important geometrical object in studying Ricci solitons is a symmetric (0, 2)- tensor

field which is parallel with respect to the Levi-Civita connection

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel with respect to

the Levi-Civita connection ∇ that is ∇h = 0. Applying the Ricci commutation identity [18].

∇2h(X,Y ;Z,W )−∇2h(X,Y ;W,Z) = 0, (3.28)

we obtain the relation

h(R(X,Y )Z,W ) + h(Z,R(X,Y )W ) = 0. (3.29)

Replacing Z = W = ξ in (3.29) and using (2.15) and also use the symmetry of h, we have

2(α2 + β2)[η(Y )h(X, ξ)− η(X)h(Y, ξ)] + 2δ[(Y α)h(φX, ξ)− (Xα)h(φY, ξ)] (3.30)
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+2δ[(Y β)h(φ2X, ξ)− (Xβ)h(φ2Y, ξ)] + 4αβ[η(Y )h(φX, ξ)− η(X)h(φY, ξ)]

Putting X = ξ in (3.30) and by virtue of (2.9), we obtain

− 2[(δξα− 2αβ]h(φY, ξ) + 2[(α2 + β2)− δ(ξβ)][η(Y )h(ξ, ξ)− h(Y, ξ)] = 0. (3.31)

By using (2.19) in (3.31), we have

[(α2 + β2)− δ(ξβ)][η(Y )h(ξ, ξ)− h(Y, ξ)] = 0. (3.32)

Suppose (α2 + β2)− δ(ξβ) 6= 0, it results

h(Y, ξ) = η(Y )h(ξ, ξ). (3.33)

Now, we can call a regular δ-Lorentzian trans Sasakian manifold with (α2+β2)−δ(ξβ) 6= 0,

where regularity, means the non-vanishing of the Ricci curvature with respect to the generator

of δ-Lorentzian trans Sasakian manifolds. Differentiating (3.33) covariantly with respect to

X, we have

(∇Xh)(Y, ξ) + h(∇XY, ξ) + h(Y,∇Xξ) = [δg(∇XY, ξ) + δg(Y,∇Xξ)]h(ξ, ξ) (3.34)

+η(Y )[(∇Xh)(Y, ξ) + 2h((∇Xξ, ξ)].

By using the parallel condition ∇h = 0, η(∇Xξ) = 0 and by the virtue of (3.33) in (3.34),

we get

h(Y,∇Xξ) = δg(Y,∇Xξ)h(ξ, ξ).

Now using (2.13) in the above equation, we get

− αh(Y, φX) + βδh(Y,X) = −αg(Y, φX)h(ξ, ξ) + βδg(Y,X)h(ξ, ξ). (3.35)

Replacing X = φX in (3.35) and after simplification, we get

h(X,Y ) = δg(X,Y )h(ξ, ξ), (3.36)

which together with the standard fact that the parallelism of h implies that h(ξ, ξ) is a

constant, via (3.33). Now by considering the above equations, we can gives the conclusion:

Theorem 3.1. Let (M,φ, ξ, η, g, δ) be an δ-Lorentzian trans Sasakian manifold with non-

vanishing ξ-sectional curvature and endowed with a tensor field h ∈ Γ(T 0
2 (M)) which is

symmetric and φ-skew-symmetric. If h is parallel with respect to ∇ then it is a constant

multiple of the metric tensor g.
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Definition 3.1. Let (M,φ, ξ, η, g, δ) be an δ-almost contact metric manifold. consider the

equation

Lξg + 2S +

[
2λ−

(
p+

2

n

)]
g + 2µη ⊗ η = 0, (3.37)

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci curvature tensor

field of the metric g and λ and µ are real constants. For µ 6= 0, the data (g, ξ, λ, µ) will be

called conformal Ricci-soliton.

Remark 3.1. If the scalar curvature −1
2(p + 2

n) of the manifold is constant, then the con-

formal η-Ricci soliton (g, ξ,
{
λ− 1

2(p+ 2
n)
}
, µ) reduces to an η-Ricci soliton and, moreover,

if µ = 0, to a Ricci soliton (g, ξ,
{
λ− 1

2(p+ 2
n)
}

). Therefore, the two concepts of Conformal

η-Ricci soliton and η-Ricci soliton are distinct on manifolds of non constant scalar curvature.

Writing Lξg in terms of the Levi-Civita connection ∇, we obtain [13]:

2S(X,Y ) = −g(∇Xξ, Y )− g(X,∇Xξ)−
1

2

[
2λ−

(
p+

2

n

)]
g(X,Y )− 2µη(X)η(Y ), (3.38)

for any X,Y ∈ χ(M).

The data (g, ξ, λ, µ) which satisfy the equation (3.37) is said to be conformal η- Ricci

soliton on M [12] and its called shrinking, steady or expanding according as λ < 0, λ = 0 or

λ > 0 respectively [12]. Now, from (2.13) , the equation (3.37) becomes:

S(X,Y ) = −1

2

[
2λ−

(
p+

2

n

)
+ δβ

]
g(X,Y ) + (βδ − µ)η(X)η(Y ). (3.39)

The above equations yields

S(X, ξ) = −1

2

[
2λ−

(
p+

2

n

)
+ µ

]
η(X) (3.40)

QX = −1

2

[
2λ−

(
p+

2

n

)
+ δβ

]
X + (βδ − µ)ξ (3.41)

Qξ = −1

2

[
2λ−

(
p+

2

n

)
+ µ

]
ξ (3.42)

r = −1

2

[
2λ−

(
p+

2

n

)
+ δβ

]
n− (n− 1)βδ − µ, (3.43)

where r is the scalar curvature. Of the two natural situations regrading the vector field V :

V ∈ Span {ξ} and V⊥ξ, we investigate only the case V = ξ.

Our interest is in the expression for Lξg + 2S + 2µη ⊗ η. A direct computation gives

Lξg(X,Y ) = 2βδ[g(X,Y ) + η(X)η(Y )]. (3.44)
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In 3-dimensional δ-Lorentzian trans Sasakian manifold the Riemannian curvature tensor is

given by

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X − S(X,Z)Y (3.45)

− r

2
[g(Y,Z)X − g(X,Z)Y ],

Putting Z = ξ in (3.45) and using (2.15) and (2.16) for 3-dimensional δ-Lorentzian trans-

Sasakian manifold, we get

(α2 + β2)[η(Y )X − η(X)Y ] + 2αβ[η(Y )φX − η(X)φY ] (3.46)

+δ[(Y α)φX − (Xα)φY ] + δ[(Y β)φ2X − (Xβ)φ2Y ]

= [(α2 + β2)− (ξβ)][η(Y )X − η(X)Y ]

+ δη(Y )QX − δη(X)QY − δ[((φY )α)X + (Y β)X]

+δ[((φX)α)Y + (Xβ)Y ].

Again, putting Y = ξ in the (3.46) and using (2.9) and (2.19), we obtain

QX =
[r

2
+ (ξβ)− (α2 + β2)

]
X +

[r
2

+ (ξβ)− 3(α2 + β2)
]
η(X)ξ. (3.47)

From (3.47), we have

S(X,Y ) =
[r

2
+ (ξβ)− (α2 + β2)

]
g(X,Y ) (3.48)

+
[r

2
+ (ξβ)− 3(α2 + β2)

]
δη(X)η(Y ).

Equation (3.48) shows that a 3-dimensional (ε, δ)-trans-Sasakian manifold is η-Einstein.

Next, we consider the equation

h(X,Y ) = (Lξg)(X,Y ) + 2S(X,Y ) + 2µη(X)η(Y ). (3.49)

By Using (3.44) and (3.48) in (3.49), we have

h(X,Y ) =
[
r − 4(α2 + β2) + 2βδ

]
g(X,Y ) (3.50)

+
[
8(α2 + β2)− 2βδ − r

]
δη(X)η(Y ) + 2µη(X)η(Y ).

Putting X = Y = ξ in (2.11), we get

h(ξ, ξ) = 2[2δ(α2 + β2)− 2µ] (3.51)

Now, (3.36) becomes

h(X,Y ) = 2[2δ(α2 + β2)− 2µ]δg(X,Y ). (3.52)
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From (3.49) and (3.52), it follows that g is conformal η-Ricci soliton.

Therefore, we can state as:

Theorem 3.2. Let (M,φ, ξ, η, g, δ) be a 3-dimensional δ-Lorentzian trans-Sasakian manifold,

then (g, ξ,
{
λ− 1

2(p+ 2
n)
}
, µ) yields a conformal η-Ricci soliton on M .

Let V be pointwise collinear with ξ. i.e., V = bξ, where b is a function on the 3-dimensional

δ-Lorentzian trans-Sasakian manifold. Then

g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X,Y ) +

[
2λ−

(
p+

2

n

)]
g(X,Y ) + 2µη(X)η(Y ) = 0.

or

bg((∇Xξ, Y ) + (Xb)η(Y ) + bg(∇Y ξ,X) + (Y b)η(X)

+2S(X,Y ) +

[
2λ−

(
p+

2

n

)]
g(X,Y ) + 2µη(X)η(Y ) = 0.

Using (2.13), we obtain

bg(−δαφX − βδ(X + η(X)ξ, Y ) + (Xb)η(Y ) + bg(−δαφY − βδ(Y + η(Y )ξ,X)

+(Y b)η(X) + 2S(X,Y ) +

[
2λ−

(
p+

2

n

)]
g(X,Y ) + 2µη(X)η(Y ) = 0.

which yields

− 2bβδg(X,Y )− 2bβδη(X)η(Y ) + (Xb)η(Y ) (3.53)

+(Y b)η(X) + 2S(X,Y ) +

[
2λ−

(
p+

2

n

)]
g(X,Y ) + 2µη(X)η(Y ) = 0.

Replacing Y by ξ in (3.53), we obtain

(Xb) + (ξb)η(X) + 2

[
2(α2 + β2)− (ξβ) +

[
2λ−

(
p+

2

n

)]
+ µ− 2bβδ

]
η(X). (3.54)

Again putting X = ξ in (3.54), we obtain

ξb = −2(α2 + β2) + (ξβ)− 1

2

[
2λ−

(
p+

2

n

)]
− µ+ 2bβδ.

Plugging this in (3.54), we get

(Xb) + 2[2(α2 + β2)− (ξβ)− 1

2

[
2λ−

(
p+

2

n

)]
+ µ− 2bβδ]η(X) = 0,

or

db = −1

2

[
2λ−

(
p+

2

n

)]
+ µ− (ξβ) + 2((α2 + β2)− 2bβδ)η. (3.55)

Applying d on (3.55), we get
{
−1

2

[
2λ−

(
p+ 2

n

)]
+ µ− (ξβ) + 2(α2 + β2)− 2bβδ

}
dη. Since

dη 6= 0 we have

− 1

2

[
2λ−

(
p+

2

n

)]
+ µ− (ξβ) + 2(α2 + β2)− 2bβδ = 0. (3.56)
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Equation(3.56) in (3.55) yields b as a constant. Therefore from (3.53), it follows that

S(X,Y ) =

(
−1

2

[
2λ−

(
p+

2

n

)]
+ 2bβδ

)
g(X,Y ) + (2bβδ − µ)η(X)η(Y ), (3.57)

which implies that M is of constant scalar curvature for constant 2bβδ. This leads to the

following:

Theorem 3.3. If in a 3-dimensional δ-Lorentzian trans-Sasakian manifold the metric g is

a conformal η-Ricci soliton and V is positive collinear with ξ, then V is a constant multiple

of ξ and g is of constant scalar curvature provided bβδ is a constant.

Tanking X = Y = ξ in (3.36) and (3.48) and comparing, we get

λ =
1

2

(
p+

2

n

)
− 2(α2 + β2)− δ(ξβ) + µ− 2bβδ = −2Kξ +

1

2

(
p+

2

n

)
− µ. (3.58)

From (3.43) and (3.57) also put n = 3, we obtain

r =

(
p

2
+

1

3

)
+ 6(α2 + β2)− 3δ(ξβ)− 2βδ + 2µ. (3.59)

Now for conformal Ricci soliton r = −1, so putting this value in the above equation we get

µ = −
(
p+

2

3

)
− (α2 + β2) +

3

2
δ(ξβ) + βδ.

Since λ is a constant, it follows from (3.57) that Kξ is a constant.

Theorem 3.4. Let (g, ξ, µ) be a conformal η-Ricci soliton in (M,φ, ξ, η, g, δ) a 3-dimensional

δ-Lorentzian trans-Sasakian manifold. Then the scalar λ−
(p
2 + 1

3

)
+ µ = −2Kξ, r = 6Kξ +

2µ− 3(ξβ)− 2bβδ +
(p
2 + 1

3

)
.

Remark 3.2. For µ = 0, (3.57) reduces to λ = −2Kξ +
(p
2 + 1

3

)
, so confromal Ricci soliton

in 3-dimensional δ-Lorentzian trans-Sasakian manifold is shrinking.

Example 3.1. Consider the 3-dimensional manifold M =
{

(x, y, z) ∈ R3 : z 6= 0
}

, where

(x, y, z) are the Cartesian coordinates in R3 and let the vector fields are

e1 =
ex

z2
∂

∂x
, e2 =

ey

z2
∂

∂y
, e3 =

−(δ)

2

∂

∂z
,

where e1, e2, e3 are linearly independent at each point of M . Let g be the Riemannain metric

defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = −δ, g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,

where δ is such that δ2 = 1 so that δ = ±1.



CONFORMAL η-RICCI SOLITONS 27

Let η be the 1-form defined by η(X) = δg(X, ξ) for any vector field X on M , and φ be

the (1,1) tensor field defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. Then by using

the linearity of φ and g, we have φ2X = X + η(X)ξ, with ξ = e3. Further g(φX, φY ) =

g(X,Y ) + δη(X)η(Y ) for any vector fields X and Y on M . Hence for e3 = ξ, the structure

defines an (δ)-almost contact structure in R3.

Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z])

−g(Y, [X,Z]) + g(Z, [X,Y ]),

which is know as Koszul’s formula.

∇e1e3 = − δ
z e1, ∇e2e3 = − δ

z e2, ∇e1e2 = 0,

using the above relation, for any vector X on M , we have ∇Xξ = δ[−αφX −β(X + η(X)ξ)],

where α = 1
z and β = −1

z . Hence (φ, ξ, η, g) structure defines the δ-Lorentzian trans-Sasakian

structure in R3.

Here ∇ be the Levi-Civita connection with respect to the metric g , then we have

[e1, e2] = 0, [e1, e3] = −(δ)

z
e1, [e2, e3] = −(δ)

z
e2.

Since g(e1, e2) = 0. Thus we have

∇e1e3 = −(δ)

z
e1 + e2, ∇e1e2 = 0

∇e2e1 = 0, ∇e2e2 = −(δ)

z
e2, ∇e2e3 = −(δ)

z
e2 − e1

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −(δ)

z
e1 + e2.

The manifold M satisfies (2.5) with α = 1
z and β = −1

z . Hence M is an δ-Lorentzian trans-

Sasakian manifolds. Then the non-vanishing components of the curvature tensor fields are

computed as follows:

R(e1, e3)e3 =
(δ)

z2
e1, R(e3, e1)e3 = −(δ)

z2
e1,

R(e2, e3)e3 =
(δ)

z2
e1, R(e3, e2)e3 = −(δ)

z2
e1.

From the above expression of the curvature tensor we can also obtain the Ricci tensor

S(e1, e1) = S(e2, e2) = S(e3, e3) =
(δ2)

z2
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since g(e1, e3) = g(e1, e2) = 0.

Therefore, we have

S(ei, ei) =
(δ)

z2
g(ei, ei),

and the scalar curvature scal = 3 (δ2)
z2

. for i = 1, 2, 3 , and α = 1
z , β = −1

z . Hence M is also

an Einstein manifold. In this case, from (3.11), computed (ei, ei) as follows

2[g(ei, ei)− η(ei)η(ei)] + 2S(ei, ei) +

[
2λ−

(
p+

2

3

)]
g(ei, ei) + 2µη(ei)η(ei) = 0

for all i ∈ {1, 2, 3}, and we have

2(1− δi3) + 2
δ

z2
+ (2λ− 3

δ

z2
) + 2µδi3 = 0

for all i ∈ {1, 2, 3}

Therefore λ = 2
(
p
4 −

1
3 −

(δ)
z2

)
and µ = − (δ)

z2
+ 1, the data (g, ξ, λ, µ) is an conformal

η-Ricci soliton on (M,φ, ξ, η, g, δ).

Here in this example if µ = 0, then (g, ξ, λ, µ) reduce to conformal Ricci soliton for

λ = 2
(
p
4 −

1
3 −

(δ)
z2

)
which is positive. Therefore conformal Ricci soliton is expanding for

λ > 0.

4. Gradient Conformal Ricci Solitons in 3-dimensional δ-Lorentzian

trans-Sasakian

Definition 4.1. A Riemannian manifold (M, g) is said to be conformal gradient Ricci soliton

if there exist a confromal change of the metric ḡ = eug, u ∈ C∞(M), a function ψ ∈ C∞(M)

and a constant λ ∈ R such that

Ric+Hess(ψ) = λḡ (4.60)

If the vector field V is the gradient of a potential function -ψ then ḡ is called a conformal

gradient Ricci soliton and ( 1.2) assume the form

∇∇ψ = S +
1

2

[
2λ−

(
p+

2

n

)]
eug. (4.61)

This reduces to

∇YDψ = QY +
1

2

[
2λ−

(
p+

2

n

)]
Y, (4.62)

where D denoted the gradient operator of g. From (4.61) it follows

R(X,Y )Dψ = (∇̄XQ)Y − (∇̄YQ)X. (4.63)
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Differentiating (3.47) we get

(∇WQ)X =
dr(W )

2
(X − η(X)ξ))− (

r

2
− 3(α2 + β2))(α(g(φW,X) (4.64)

+βδg(W,X)− δβη(X)η(W )) + η(X)∇W ξ.

In (4.63) replacing W = ξ, we obtain

(∇ξQ)X =
dr(ξ)

2
(X − η(X)ξ)). (4.65)

Then we have

g(∇ξQ)X − (∇̄XQ)(ξ, ξ) (4.66)

= g(
dr(ξ)

2
(X − η(X)ξ, ξ)) =

dr(ξ)

2
(g(X, ξ)− η(X))) = 0.

Using (4.65) and (4.64), we obtain

g(R(ξ,X)Dψ, ξ) = 0. (4.67)

From (2.20)

g(R̄(ξ, Y )Dψ, ξ) = (α2 + β2)(g(Y,Dψ)− η(Y )η(Dψ)).

Using (4.66), we get

(α2 + β2)(g(Y,Dψ)− η(Y )η(Dψ)) = 0

(α2 + β2)(g(Y,Dψ)− η(Y )g(Dψ, ξ)) = 0,

or

(g(Y,Dψ)− g(Y, ξ)g(Dψ, ξ)) = 0,

which implies

(g(Y,Dψ)− g(Y, ξ)g(Dψ, ξ)) = 0,

which implies

Dψ = (ξψ)ξ, since α2 + β2 6= −δ(ξβ). (4.68)

Using (4.67) and (4.61)

S(X,Y ) +
1

2

[
2λ−

(
p+

2

n

)]
eug(X,Y ) = g(∇YDψ,X) = g(∇Y (ξψ)ξ,X)

= (ξψ)g(∇̄Y ξ,X) + Y (ξψ)η(X)

= (ξψ)g(−δαφY − δβY − δβη(Y )ξ,X) + Y (ξψ)η(X)

S(X,Y ) +
1

2

[
2λ−

(
p+

2

n

)]
ḡ(X,Y ) = −δα(ξψ)g(φY,X)− δβ(ξψ)ḡ(Y,X) (4.69)

−δβ(ξψ)η(Y )η(X) + Y (ξψ)η(X).
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Putting X = ξ in (4.68) and using (2.23) we get

S̄(Y, ξ)+
1

2

[
2λ−

(
p+

2

n

)]
euη(Y ) = Y (ξψ) = [λ+2δβ+2(α2+β2−δ(ξβ))]euη(Y ). (4.70)

Interchanging X and Y in (4.68), we get

S(X,Y ) +
1

2

[
2λ−

(
p+

2

n

)]
ḡ(X,Y ) = −δα(ξψ)g(Y, φX) (4.71)

−δβ(ξψ)ḡ(X,Y )− δβ(ξψ)η(Y )η(X) +X(ξψ)η(Y ).

Adding (4.68) and (4.70) we get

2S(X,Y ) +

[
2λ−

(
p+

2

n

)]
ḡ(X,Y ) = −2δβ(ξψ)ḡ(X,Y ) + Y (ξψ)η(X) (4.72)

−2δβ(ξψ)η(X)η(Y ) +X(ξψ)η(Y ).

Using (4.69) in (4.71) we have

S(X,Y ) +
1

2

[
2λ−

(
p+

2

n

)]
ḡ(X,Y ) = −δβ(ξψ)[g(X,Y )− η(X)η(Y )] (4.73)

+
1

2

[
2λ−

(
p+

2

n

)]
+ δβ + 2(α2 + β2 − δ(ξβ))]η(X)η(Y ).

Then using (4.61) we have

∇YDψ = −δβ(ξψ)(Y − η(Y )ξ) (4.74)

+

[
1

2

[
2λ−

(
p+

2

n

)]
+ δβ + 2(α2 + β2 − δ(ξβ))

]
η(Y )ξ.

Using (4.73) we calculate

R(X,Y )Dψ = ∇X∇YDψ −∇Y∇XDψ −∇[X,Y ]Dψ

= −δβX(ξψ)Y + δβY (ξψ)X (4.75)

−δβY (ξψ)η(X)ξ + δβX(ξψ)η(Y )ξ

+

[
1

2

[
2λ−

(
p+

2

n

)]
+ δβ + 2(α2 + β2 − δ(ξβ))

]
((∇Xη)(Y )ξ − (∇Y η)(X)ξ)

+

[
1

2

[
2λ−

(
p+

2

n

)]
+ δβ + 2(α2 + β2 − δ(ξβ))

]
((∇Xξ)η(Y )ξ − (∇Y ξ)η(X)).

Taking inner product with ξ in (4.74), we get

0 = g((X,Y )Dψ, ξ) = 2δα+

[
1

2

[
2λ−

(
p+

2

n

)]
+ δβ + 2(α2 + β2 − δ(ξβ))

]
g(φY,X).

(4.76)

Thus we have 2δα+
[
1
2

[
2λ−

(
p+ 2

n

)]
+ δβ + 2(α2 + β2 − δ(ξβ))

]
= 0.
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Now we consider the following cases:

Case (i) δα = 0, or

Case (ii) [
[
λ−

(p
2 + 1

n

)]
+ δβ + 2(α2 + β2 − δ(ξβ))] = 0,

Case (iii) α = 0 and [
[
λ−

(p
2 + 1

n

)]
+ δβ + 2(α2 + β2 − δ(ξβ))] = 0.

Case (i) If α = 0, the manifold reduces to a δ-Lorentzian β-Kenmotsu manifold.

Case (ii) Let [
[
λ−

(p
2 + 1

n

)]
+ δβ + 2(α2 + β2 − δ(ξβ))] = 0. If we use this in (4.69) we get

Y (ξψ) = −δβ(ξψ)η(Y ). Substitute this value in (4.71) we obtain

S(X,Y ) +
1

2

[
2λ−

(
p+

2

n

)]
g(X,Y ) = −δβ(ξψ)g(X,Y )− 2δβη(X)η(Y ). (4.77)

Now, contracting (4.76), we get

r +
3

2

[
2λ−

(
p+

2

n

)]
= −3δβ(ξψ)− 2δβ. (4.78)

Putting n = 3 and for conformal Ricci soliton r = −1 in (4.78) which implies

(ξψ) = − 1

−δβ

(
λ+

p

2

)
− 2

3
. (4.79)

If r = −1, then (ξψ) = constant = k(say). Therefore from (4.67) we have Dψ = (ξψ)ξ = kξ.

This we can write this equation as

g(Dψ,X) = kη(X), (4.80)

which means that dψ(X) = kη(X). Applying d this, we get kdη = 0. Since dη 6= 0, we have

k = 0. Hence we get Dψ = 0. This means that ψ = constant Therefore equation (4.60)

reduces to

S(X,Y ) = 2(α2 + β2 − δ(ξβ))g(X,Y ),

that is M is an Einstein manifold.

Case (iii) Using α = 0 and
[
1
2

[
2λ−

(
p+ 2

n

)]
+ δβ + 2(α2 + β2 − δ(ξβ))

]
= 0. in (4.69) we

obtain Y (ξψ) = −δβ(ξψ)η(Y ). Now as in Case (ii) we conclude that the manifold is an

Einstein manifold.

Thus we have the following :

Theorem 4.1. If a 3-dimensional δ-Lorentzian trans Sasakian manifold with constant scalar

curvature admits gradient Einstein soliton, then the manifold is either a δ-Lorentzian β-

Kenmotsu manifold or an Einstein manifold provided α, β = constant .
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In [15] it was proved that if a 3-dimensional compact connected trans-Sasakian manifold is

of constant curvature, then it is either α-Sasakian or β-Kenmotsu. Since for a 3-dimensional

Riemannian manifold constant curvature and Einstein manifold are equivalent, therefore

from the Theorem 3 (see [15]) we state the following:

Corollary 4.1. If a compact 3-dimensional δ-Lorentzian trans-Sasakian manifold with con-

stant scalar curvature admits Ricci soliton, then the manifold is either δ-Lorentzian α-

Sasakian or δ-Lorentzian β-Kenmotsu.

Also in [15], authors proved that a 3-dimensional connected trans-Sasakian manifold is

locally φ-symmetric if and only if the scalar curvature is constant provided α and β are

constants. Hence from Theorem 3 in [15], we obtain the following:

Corollary 4.2. If a locally φ-symmetric 3-dimensional connected δ-Lorentzian trans-Sasakian

manifold its admits gradient conformal soliton, then manifold is either δ-Lorentzian β-Kenmotsu

or Einstein manifold provided α, β = constant.
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