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FRACTIONAL EQUIAFFINE CURVATURES OF CURVES IN

3-DIMENSIONAL AFFINE SPACE
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Abstract. In this study, we investigate the equiaffine invariants of a parametrized curve

in the 3-dimensional affine space R3 by using a simplification of Caputo fractional deriva-

tive. We introduce the so-called fractional equiaffine arclength function for a non-degenerate

parametrized curve, providing the notions of fractional equiaffine frame and curvatures. Fur-

thermore, we give the relations between the fractional and standard equiaffine curvatures.
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1. Introduction

Fractional calculus extends to arbitrary orders the notions of classical derivative and inte-

gral of a function and has a remarkable historical background, which it can be found in [22].

This interesting field has applications ranging from physical phenomena ([20]), dynamical

systems ([27]), viscoelasticity ([15], [24]) to medicine [8].

Recently, there have been ascending contributions to the differential geometric applications

of fractional calculus. From the viewpoints of Riemannian and Finsler geometries, these
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contributions can be found in [4], [5]. Also, we refer to [1], [2], [9], [10], [11], [16], [17], [19],

[25], [26], [28], [29] for the contributions to the differential geometries of curves and surfaces.

We will consider a simplification of Caputo fractional derivative as follows: let f(t) and

g(x) be smooth functions and denote by Dα Caputo fractional derivative. Then the simplifi-

cation, relating to the derivative of the composite function of f(t) and g(x), that we will use

is given by

(Dα
xf)(g(x)) =

αx1−α

Γ(2− α)

df

dt

dg

dx
. (1.1)

The idea of using Equation (1.1) in the study of differential geometric curves was first pro-

posed in [26] because of the reason that Caputo fractional derivative of composite functions

is given by an infinite series. The derivative of composite functions, i.e. chain rule, is an es-

sential tool for the parametrized objects in differential geometry. To overcome this difficulty

in the case of Caputo fractional derivative, we will use Equation (1.1) in our calculations as

did the authors in [26].

In this study, we perform Equation (1.1) in order to investigate the equiaffine invariants of

the non-degenerate parametrized curves in the 3-dimensional affine space R3. Our motivation

of investigating the equiaffine invariants is the following.

Let r(s) be a regular parametrized curve in a Euclidean space E3 by arclength and ×

denote the cross product. Let {t,n,b} be the Frenet frame along r(s) such that (see [21])

t =
dr

ds
, n =

d2r/ds2

∥d2r/ds2∥
, b = t× n,

where ∥.∥ denotes the induced norm in E3 by the Euclidean scalar product.

If we use Equation (1.1) instead of the standard ordinary derivative, i.e. d/ds, then the set

of Frenet vectors is again {t,n,b}. This situation changes for the equiaffine Frenet frame of a

non-degenerate curve in R3. More explicitly, the equiaffine Frenet frame of a non-degenerate

curve produced by Equation (1.1) is different than the standard equiaffine Frenet frame. This

justifies why we consider the equiaffine invariants instead of Frenet invariants for the use of

fractional derivative in the differential geometry of curves.

The main purpose of this study is to extend the results in [2] to 3-dimensional case

where the authors ([2]) introduced the fractional equiaffine invariants of a non-degenerate

curve in the affine plane R2. Since we use a different formula of derivative instead of the

standard ordinary derivative, we will need a new equiaffine arclength function which differs

by the standard one. The new equiaffine arclength function will depend on the dimension of

affine space and the standard equaffine parameter of given non-degenerate curve. For this,
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we will provide a general formula for the fractional equiaffine arclength function of a non-

degenerate curve in the n−dimensional affine space Rn (n ≥ 2) (see Definition 4.1). Then,

in 3-dimensional context, we introduce the equiaffine Frenet curvatures of fractional type

(see Definition 4.3) and obtain the properties between the fractional and standard equiaffine

curvatures (Theorem 4.1 and Corollaries 4.1 and 4.2). Several examples are also provided by

figures.

2. Fractional tools

Denote by Γ(α) the Euler gamma function depending on the parameter α ∈ R, which it

is defined by ([14])

Γ(α) =

∫ ∞

0
tα−1e−tdt.

Throughout the paper we will assume 0 < α ≤ 1. The Riemann–Liouville fractional

integral of order α for a function f(x) is defined by ([14], [22])

Iα0+f(x) =
1

Γ(α)

∫ x

0

f(ξ)

(x− ξ)1−α
dξ.

The Riemann–Liouville fractional derivative of order α is ([14], [22])

(Dα
0+f)(x) =

d

dx
(I1−α

0+ f)(x) =
1

Γ(1− α)

d

dx

∫ x

0

f(ξ)

(x− ξ)α
dξ.

As can be seen, the Riemann–Liouville fractional derivative uses the ordinary integral of

f(x) and it is a nonlocal operator, i.e. the Riemann–Liouville derivative of f(x) at a point

x0 is determined by nonlocal values of f(x).

The Caputo fractional derivative of order α for a function f(x) is given by ([6])

(Dα
0+f)(x) = I1−α

0+ (
df

dx
)(x) =

1

Γ(1− α)

∫ x

0

1

(x− ξ)α
df(ξ)

dξ
dξ.

Leibniz rule and the derivative of composite function for the Caputo fractional derivative are

respectively defined by ([3])

(Dα
0+fg)(x) =

∞∑
i=0

(
α

i

)
dif

dxi
(Dα−i

x g)(x)− f(0)g(0)

Γ(1− α)
x−α

and

(Dα
0+f)(g(x)) =

∞∑
i=1

(
α

i

)
xi−α

Γ(i− α+ 1)

dif(g(x))

dxi
+

f(g(x))− f(g(0))

Γ(1− α)
x−α. (2.2)

Notice that the simplification (1.1) is obtained by extracting the term i = 1 in the infinite

series in Equation (2.2).
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For simplicity, we will use the following notation throughout the paper:

(Dα
0+f)(x) =

d{α}f

dx{α}
.

3. Equiaffine Invariants

Let Rn denote the n−dimensional affine space (n ≥ 2) and Mat(n,R) be the set of all

square matrices of order n. We set

SL(Rn) = {A ∈ Mat(n,R) : det(A) = 1}.

Then by an equiaffine invariant we mean an unchanged feature under the actions of SL(Rn)

and the translations of Rn. For example, the volume is an equiaffine invariant (see e.g. [7]).

Denote by [u1, . . . , un] the determinant of the vectors u1, . . . , un ∈ Rn where uk represents

the k.-th column. Then the value of [u1, . . . , un] is an equiaffine invariant because it measures

the volume of parallelopipedon determined by u1, . . . , un.

Let t 7→ r(t), t ∈ I ⊂ R, a smooth parametrized curve in Rn. We call the curve r(t)

non-degenerate if, for every t ∈ I, (see [7] and also [12], [13], [18])[
dr

dt
(t), ...,

dnr

dtn
(t)

]
̸= 0.

For simplicity, by a curve we will mean a non-degenerate smooth parametrized curve through-

out the paper. Then the equiaffine arclength function is defined by

σ(t) =

∫ t [ dr
du

(u), ...,
dnr

dun
(u)

]2/(n2+n)

du.

We call that the curve is parametrized by equiaffine arclength if, for every σ ∈ J ⊂ R,[
dr

dσ
(σ), ...,

dnr

dσn
(σ)

]
= 1. (3.3)

The set
{

dr
dσ (σ), ...,

dnr
dσn (σ)

}
is called the equiaffine Frenet frame of r(σ). When we differen-

tiate Equation (3.3) with respect to the parameter σ, we may observe that[
dr

dσ
(σ), ...,

dn−1r

dσn−1
(σ),

dn+1r

dσn+1
(σ)

]
= 0,

where the following set are linearly dependent for every σ ∈ J :{
dr

dσ
(σ), ...,

dn−1r

dσn−1
(σ),

dn+1r

dσn+1
(σ)

}
.

Hence, this gives the existence of smooth functions κi(σ) on J (1 ≤ i ≤ n− 1) such that

dn+1r

dσn+1
(σ) +

n−1∑
i=1

κi(σ)
dir

dσi
(σ) = 0,
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where

κi(σ) = (−1)n−i+1

[
dr

dσ
(σ), ...,

di−1r

dσi−1
(σ),

di+1r

dσi+1
(σ), ...,

dn+1r

dσn+1
(σ)

]
, 1 ≤ i ≤ n− 1.

The function κi(σ) is called i.−th equiaffine curvature of the curve r(σ). The equiaffine

curvatures are the equiaffine invariants in Rn. In 3-dimensional case, that is, in the case

i ∈ {1, 2}, we will use the notations κ1 = κ and κ2 = τ . In additon, the equiaffine Frenet

vectors will be denoted by

T(σ) =
dr

dσ
(σ), N(σ) =

d2r

dσ2
(σ), B(σ) =

d3r

dσ3
(σ).

In consequence, the equiaffine equations of Frenet type are given in matrix form
Ṫ(σ)

Ṅ(σ)

Ḃ(σ)

 =


0 1 0

0 0 1

−κ(σ) −τ(σ) 0



T(σ)

N(σ)

B(σ)

 ,

where Ṫ(σ) is the derivative of T(σ) with respect to the arclength parameter σ.

4. Equiaffine invariants of fractional order

Let r(σ), σ ∈ (a, b), 0 < a < b, be a curve in Rn, n ≥ 2, parametrized by equiaffine

arclength. Again, we consider the simplification (1.1) as

d{α}r

dt{α}
(σ(t)) =

αt1−α

Γ(2− α)

dr

dσ
(σ(t))

dσ

dt
(t). (4.4)

Here α ∈ R with 0 < α ≤ 1 and Equation (4.4) becomes the classical chain rule provided

α = 1.

In the following, by using Equation (4.4) we introduce an equiaffine arclength function of

fractional type.

Definition 4.1. Let r(σ), σ ∈ (a, b), 0 < a < b, be a curve in Rn parametrized by equiaffine

arclength. The following function s(σ) is called equiaffine arclength function of the curve of

order 0 < α ≤ 1

σ 7→ s(σ) =

(
2α+ n− 1

n+ 1

(
α

Γ(2− α)

)2/(n+1)

σ

)(n+1)/(2α+n−1)

. (4.5)

It is obvious from Equation (4.5) that s(σ) is a smooth function of σ on (a, b) and so is

r(s(σ)).
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Proposition 4.1. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in Rn parametrized by equiaffine

arclength of order 0 < α ≤ 1. Then, for every s ∈ (c, d),[
d{α}r

ds{α}
(s),

d

ds

(
d{α}r

ds{α}
(s)

)
, ...,

dn−1

dsn−1

(
d{α}r

ds{α}
(s)

)]
= 1.

Proof. Let σ be the standard equiaffine arclength parameter of r(s). By Equation

(4.5), we have ds/dσ > 0, yielding the existence of the inverse of the function s(σ), namely,

s 7→ σ(s) =
n+ 1

2α+ n− 1

(
α

Γ(2− α)

)−2/(n+1)

s(2α+n−1)/(n+1), (4.6)

where σ(s) is smooth on s ∈ (c, d). Taking derivative in Equation (4.6) with respect to s,

dσ

ds
(s) =

(
α

Γ(2− α)

)−2/(n+1)

s2(α−1)/(n+1). (4.7)

From Equation (4.4) we have

d{α}r

ds{α}
(σ(s)) =

αs1−α

Γ(2− α)

dr

dσ
(σ(s))

dσ

ds
(s). (4.8)

We successively differentiate Equation (4.8) with respect to s, obtaining

d
ds

(
d{α}r
ds{α} (s)

)
= (...) drdσ (σ(s)) +

αs1−α

Γ(2−α)

(
dσ
ds (s)

)2 d2r
dσ2 (σ(s)),

...

dn−1

dsn−1

(
d{α}r
ds{α} (s)

)
= (...) drdσ (σ(s)) + (...) d

2r
dσ2 (σ(s)) + ...+ αs1−α

Γ(2−α)

(
dσ
ds (s)

)n dnr
dσn (σ(s)),

where since we want to find the value of the determinant determined by

d{α}r

ds{α}
(s),

d

ds

(
d{α}r

ds{α}
(s)

)
, ...,

dn−1

dsn−1

(
d{α}r

ds{α}
(s)

)
,

the coefficients denoted by (. . . ) will not effect our calculation. Noticing that r(σ) and σ(s)

are smooth, then the above derivatives exist. Hence,[
d{α}r

ds{α}
(s),

d

ds

(
d{α}r

ds{α}
(s)

)
, ...,

dn−1

dsn−1

(
d{α}r

ds{α}
(s)

)]
=

(
αs1−α

Γ(2− α)

)n(
dσ

ds
(s)

)(n2+n)/2 [ dr
dσ

(σ(s)),
d2r

dσ2
(σ(s)), ...,

dnr

dσ2
(σ(s))

]
.

Because σ is the standard equiaffine arclength parameter, the value of the determinant at

the right hand side is 1, yielding[
d{α}r

ds{α}
(s),

d

ds

(
d{α}r

ds{α}
(s)

)
, ...,

dn−1

dsn−1

(
d{α}r

ds{α}
(s)

)]
=

(
αs1−α

Γ(2− α)

)n(
dσ

ds
(s)

)(n2+n)/2

.

Considering Equation (4.7) into the above last equation, we complete the proof.
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Since we are interested in the 3−dimensional case, then Equation (4.5) is now

s(σ) =

(
α+ 1

2

(
α

Γ(2− α)

)1/2

σ

)2/(α+1)

. (4.9)

Hence,

σ(s) =

(
α

Γ(2− α)

)−1/2 2

α+ 1
s(α+1)/2

and

dσ

ds
(s) =

(
αs1−α

Γ(2− α)

)−1/2

. (4.10)

Definition 4.2. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in R3 parametrized by equiaffine

arclength of order 0 < α ≤ 1. Then, the set
{
T{α}(s),N{α}(s),B{α}(s)

}
is called equiaffine

Frenet frame of r(s) of order α, where

T{α}(s) =
d{α}r

ds{α}
(s), N{α}(s) =

d

ds

(
d{α}r

ds{α}
(s)

)
, B{α}(s) =

d2

ds2

(
d{α}r

ds{α}
(s)

)
.

Note that when α = 1 the set
{
T{α}(s),N{α}(s),B{α}(s)

}
is equivalent to the standard

equiaffine Frenet frame of r(s), that is, T{1} = T, N{1} = N, B{1} = B.

By Proposition 4.1, we have[
T{α}(s),N{α}(s),B{α}(s)

]
= 1. (4.11)

Denote by a prime the ordinary derivative with respect to the parameter s, that is, N{α}(s) =

T{α}′(s) and B{α}(s) = N{α}′(s). Then we differentiate Equation (4.11) with respect to s,

obtaining [
T{α},N{α},B{α}′

]
= 0,

where it can be seen that the set
{
T{α},N{α},B{α}′} is linearly dependent for every s ∈ (c, d).

Then there are some smooth functions on (c, d) denoted by κ{α} and τ{α} such that

κ{α}T{α} + τ{α}N{α} +B{α}′ = 0.

Consequently, we can give the following.

Definition 4.3. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in R3 parametrized by equiaffine

arclength of order 0 < α ≤ 1. Then the functions κ{α}(s) and τ{α}(s) are called the equiaffine

curvatures of r(s) of order α, where

κ{α}(s) = −
[
N{α}(s),B{α}(s),B{α}′(s)

]
(4.12)
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and

τ{α}(s) =
[
T{α}(s),B{α}(s),B{α}′(s)

]
. (4.13)

With this definition, we have the equiaffine Frenet equations of order α given in matrix

form 
T{α}′(s)

N{α}′(s)

B{α}′(s)

 =


0 1 0

0 0 1

−κ{α}(s) −τ{α}(s) 0



T{α}(s)

N{α}(s)

B{α}(s)

 .

We occasionally use the terms of fractional equiaffine arclength, Frenet vector and

curvature instead of the equiaffine arclength, Frenet vector and curvature of order α.

Proposition 4.2. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in R3 parametrized by equiaffine

arclength of order 0 < α ≤ 1. Denote by
{
T{α}(s),N{α}(s),B{α}(s)

}
and {T(σ),N(σ),B(σ)}

the equiaffine Frenet frames of r(s). Then we have
T{α}(s)

N{α}(s)

B{α}(s)

 =


(

αs1−α

Γ(2−α)

)1/2
0 0

1−α
2

(
αs−1−α

Γ(2−α)

)1/2
1 0

α2−1
4

(
αs−3−α

Γ(2−α)

)1/2
1−α
2 s−1

(
αs1−α

Γ(2−α)

)−1/2



T(σ(s))

N(σ(s))

B(σ(s))

 ,

where σ is the standard equiaffine arclength parameter.

Proof. Denote by σ the standard equiaffine parameter. By Equations (4.8) and

(4.10), we write

T{α}(s) =

(
αs1−α

Γ(2− α)

)1/2

T(σ(s)) (4.14)

where T(σ(s)) = dr
dσ (σ(s)). Differentiating Equation (4.14) with respect to s,

N{α}(s) =
1− α

2

(
αs−1−α

Γ(2− α)

)1/2

T(σ(s)) +N(σ(s)) (4.15)

and

B{α}(s) =
α2 − 1

4

(
αs−3−α

Γ(2− α)

)1/2

T(σ(s)) +
1− α

2
s−1N(σ(s)) +

(
αs1−α

Γ(2− α)

)−1/2

B(σ(s)).

(4.16)

The proof is completed by expressing Equations (4.14), (4.15) and (4.16) in matrix form.

Proposition 4.2 indicates the difference between the fractional and standard equiaffine

Frenet vectors. Now, we give the relations between the fractional and standard equiaffine

curvatures.
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Theorem 4.1. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in R3 parametrized by equiaffine

arclength of order 0 < α ≤ 1. The equiaffine curvatures κ{α}(s) and τ{α}(s) of order α are

invariants under the equiaffine transformations of R3. Furthermore, if the standard equiaffine

curvatures of r(s) are denoted by κ(σ) and τ(σ), then the following relations occur

κ{α}(s) =
(3 + α)(−1 + α)

4
s−3 +

(
αs1−α

Γ(2− α)

)−3/2

κ(σ(s))− (1− α)Γ(2− α)

2α
sα−2τ(σ(s))

(4.17)

and

τ{α}(s) =
(3 + α)(1− α)

4
s−2 +

(
αs1−α

Γ(2− α)

)−1

τ(σ(s)). (4.18)

Proof. Since κ{α}(s) and τ{α}(s) are defined by determinants (see Definition 4.3),

those are invariant under the equiaffine transformations of R3. This is the proof of first part.

Differentiating (4.16) with respect to s,

d(B{α})

ds
(s) = p(s)T(σ(s)) + q(s)N(σ(s)), (4.19)

where

p(s) =
(3 + α)(1− α2)

8

(
αs−5−α

Γ(2− α)

)1/2

−
(

αs1−α

Γ(2− α)

)−1

κ(σ(s))

and

q(s) =
(3 + α)(−1 + α)

4
s−2 −

(
αs1−α

Γ(2− α)

)−1

τ(σ(s)).

If we consider Equations (4.15), (4.16) and (4.19) in Equation (4.12), after some manipula-

tions, we derive Equation (4.17). Analogously, Equation (4.18) is obtained by substituting

equations (4.14), (4.16) and (4.19) into (4.13). This completes the proof.

As consequences, we can state the following results.

Corollary 4.1. Let r(s), s ∈ (c, d), 0 < c < d, be a curve in R3 parametrized by equiaffine

arclength of order 0 < α ≤ 1. If the equiaffine curvatures of r(s) vanish identically, then

κ{α}(s) =
(3 + α)(−1 + α)

4
s−3

and

τ{α}(s) =
(3 + α)(1− α)

4
s−2.

Proof. It follows by Equations (4.17) and (4.18).
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Corollary 4.2. Let r(σ), σ ∈ (a, b), 0 < a < b, be a curve in R3 parametrized by equiaffine

arclength. If the equiaffine curvatures of r(σ) of order 0 < α ≤ 1 vanish identically, then

κ(σ) =
(3 + α)(1− α)

(1 + α)2
σ−3 (4.20)

and

τ(σ) = −(3 + α)(1− α)

(1 + α)2
σ−2. (4.21)

Proof. If τ{α}(s) = 0 for every s then from Equation (4.18) we have

τ(σ(s)) =
(3 + α)(−1 + α)

4

(
αs−1−α

Γ(2− α)

)
. (4.22)

Equation (4.21) is obtained by considering Equation (4.9) in Equation (4.22). Analogously,

if κ{α} = 0 for every s then Equation (4.17) is now

κ(σ(s)) =
(3 + α)(1− α)

4

(
αs−1−α

Γ(2− α)

)3/2

+
(1− α)Γ(2− α)

2α

(
αs−(1+α)/3

Γ(2− α)

)3/2

τ(σ(s)).

(4.23)

Substituting Equations (4.9) and (4.21) into Equation (4.23), we derive Equation (4.20).

5. Examples

Example 5.1. Consider in R3 the following curve (see Figure 1)

r(σ) =

(
σ,

σ2

2
,
σ3

3

)
, σ ∈ (a, b), 0 < a < b,

where σ is the equiaffine arclength parameter of r(σ), that is, [T(σ),N(σ),B(σ)] = 1, for

every σ ∈ (a, b). Because B(σ) = (0, 0, 1), the equiaffine curvatures κ(σ) and τ(σ) are

identically 0. By Corollary 4.1, the equiaffine curvatures of the curve of order 0 < α ≤ 1 are

κ{α}(s) = (3+α)(−1+α)/(4s3) and τ{α}(s) = (3+α)(1−α)/(4s2), where s is the equiaffine

arclength parameter of order α. The graphs of the curvature functions κ{α}(s) and τ{α}(s)

can be drawn in Figures 2 and 3 up to different values of α.
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Figure 1. r(σ) =
(
σ, σ

2

2 , σ
3

3

)
, σ ∈ [1/2, 5], with vanishing equiaffine curvatures.

Figure 2. The graphs of κ{α}(s) = (3 + α)(−1 + α)/(4s3), s ∈ [1, 3], in blue

for α = 0.5, in yellow for α = 0.7, in green for α = 0.9 and in red for α = 1.

Figure 3. The graphs of τ{α}(s) = (3 + α)(1 − α)/(4s2), s ∈ [1, 3], in blue

for α = 0.5, in yellow for α = 0.7, in green for α = 0.9 and in red for α = 1.
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Example 5.2. Let 0 < α ≤ 1. We take in R3 the following curve (see Figure 4)

r(s) =
Γ(2− α)

α

(
sα

α
,
sα+1

α+ 1
,

sα+2

2(α+ 2)

)
, s ∈ (c, d), 0 < c < d,

where s is the equiaffine arclength parameter of r(s) of order α, that is,

[T{α}(s),N{α}(s),B{α}(s)] = 1,

for every s ∈ (c, d). Because B{α}(s) = (0, 0, 1), the equiaffine curvatures κ{α}(s) and τ{α}(s)

of order α are identically 0. By Corollary 4.2, the standard equiaffine curvatures of r(s) are

κ(σ) = (3+α)(1−α)(1 +α)−2σ−3 and τ(σ) = −(3 +α)(1−α)(1 +α)−2σ−2, where σ is the

equiaffine arclength parameter (see Figures 5 and 6).

Figure 4. r(s) = Γ(2−α)
α

(
sα

α , s
α+1

α+1 ,
sα+2

2(α+2)

)
, s ∈ [1/2, 5], with vanishing

equiaffine curvatures of order 0 < α ≤ 1. In blue for α = 0.5, in yellow

for α = 0.7, in green for α = 0.9 and in red for α = 1.

Figure 5. The graphs of κ(σ) = (3 + α)(1 − α)(1 + α)−2σ−3, σ ∈ [1, 3], in

blue for α = 0.5, in yellow for α = 0.7, in green for α = 0.9 and in red for

α = 1.
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Figure 6. The graphs of τ(σ) = −(3 + α)(1− α)(1 + α)−2σ−2, σ ∈ [1, 3], in

blue for α = 0.5, in yellow for α = 0.7, in green for α = 0.9 and in red for

α = 1.

6. Discussions

The results of the present study may give new ideas relating to using of fractional derivative

in the differential geometry of curves. For example, when emposing some natural conditions

on curvatures, the classification of curves is a central problem. Or, the extension of results in

3-dimenisonal case to higher dimensions is an important problem again. Hence, the following

two problems can be posed:

(1) The first one is the problem of finding parametric equations of curves when their

fractional curvatures κ{α} and τ{α} are constant. Indeed, solving this problem is

equivalent to solve the following vector differential equation

κ
{α}
0 T{α} + τ

{α}
0 N{α} +B{α}′ = 0, (6.24)

where κ
{α}
0 and τ

{α}
0 are some constants. As an example, we will find the equation

of a curve that satisfies κ
{α}
0 (s) = 0 = τ

{α}
0 (s), for every s. Then Equation (6.24) is

now B{α}′ = 0, or equivalently,

d3

ds3

(
d{α}r

ds{α}

)
= 0.

Integrating,

d{α}r

ds{α}
= a+ bs+ c

s2

2
, (6.25)

where a,b, c ∈ R3. Since
[
T{α},N{α},B{α}] = 1, we may choose that a = (1, 0, 0),

b = (0, 1, 0) and c = (0, 0, 1). Now if we consider Equation (4.4) into Equation (6.25)

then we have

dr

ds
=

Γ(2− α)

α

(
s−1+α, sα, s1+α

)
.
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After integrating the above last equation, up to a translation of R3, we find the

parametrization of the curve that we are looking for. Consequently, the general

solution of the posed problem can be obtained by following the similar steps.

(2) The second idea is to find the relations in higher dimensions between the fractional

and standard equiaffine curvatures, that is, the analogous ones of equations (4.17)

and (4.18). In particular, the main purpose of this problem is to express the relations

into one equation between the fractional and standard equiaffine curvatures. For

this, given a curve r(s) in Rn parametrized by equiaffine arclength of order α then

the i.−th equiaffine curvature of order α can be defined by

κ
{α}
i = (−1)n−i+1

[
d{α}r

ds{α}
, ...,

di−2

dsi−2

(
d{α}r

ds{α}

)
,
di

dsi

(
d{α}r

ds{α}

)
, ...,

dn

dsn

(
d{α}r

ds{α}

)]
,

where i ∈ {1, ..., n− 1}. The problem proposes to establish a unique relation between

κ
{α}
i and κi that holds for some i ∈ {1, ..., n− 1}.

7. Conclusions

The simplification of Caputo fractional derivative given by Equation (1.1) effects the study

of curves in terms of their equiaffine invariants in two ways. Given a curve r(s), then the

first effect is obtaining a different equiaffine Frenet frame of r(s) from the standard one

(Proposition 4.2). This situation is not valid for the Euclidean setting. The second effect

can be seen on the fractional equiaffine curvatures (see Equations (4.17) and (4.18)) where

the value of the terms containing the arclength s take a large value around an initial time

and converges to zero for s → ∞. See also Figures 2 and 3. This intention of the fractional

equiaffine curvatures refers to the memory effect of fractional derivative which is decreasing

for a long period of time ([23]).

As can be observed in the figures of Section 4, as α goes to 1 the geometric notions defined

by using the derivative formula (1) approach to the standard ones. This implies that the

idea proposed in the present study is consistent with the classical theory.
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