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THE SPECIAL CURVES OF FIBONACCI AND LUCAS CURVES
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ABSTRACT. In this paper, we introduce the contrapedal, radial, inverse, conchoid and
strophoid curves of Fibonacci and Lucas curves which are defined by Horadam and Shannon,
[18]. Moreover, the graphs of these special curves are drawn by using Mathematica.
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1. INTRODUCTION

The plane curves in the Euclidean plane are one of the most essential subjects in differential
geometry. Thanks to a growing interest in this subject, it is demonstrated that any plane
curve brings about other plane curves through several constructions. Some of these are
contrapedal, radial, inverse, conchoid and strophoid curves. Contrapedal curves are employed
in many areas such as mathematics (see [16]) and physics (see [20]). Radial curve was studied
by Robert Tucker in 1864, [25]. Geometrical inversion is originated from Jakob Steiner in
1824. In 1825, Adolphe Quetelet followed closely him by giving some examples. Apparently,
it independently discovered by Giusto Bellavitis in 1836, by Stubbs and Ingram in 1842-
3, and by Lord Kelvin who employed it in his electrical researches in 1845, [25]. Inverse

curve has a important role in mathematics (see [6]). Conchoid is a plane curve invented
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by the Greek mathematician Nicomedes, who applied it to the problems of duplication the
cube. The conchoid has been used by later mathematicians, notably Sir Isaac Newton, in
the construction of various cubic curves, [23]. Conchoids make a significant contribution in
many applications as optics (see [2]), astronomy (see [9]), engineering in medicine and biology
(see [8], [12]), mechanical in fluid processing (see [2I]), physics (see [22]), electromagnetic
research (see [20]), etc. The Conchoid of Nicomedes, which is the conchoid of a line, and the
Limacgon of Pascal, which is the conchoid of a circle, are the two most famous conchoids,
[17]. Strophoid curve initially appears in work by the English mathematician Isaac Barrow,
who was Isaac Newton’s teacher, in 1670. However, the curve actually is described in his
letters by Evangelista Torricelli before Barrow’s work around 1645. In 1846, the strophoid,
whose meaning is a ”"belt with a twist”, was named by Montucci, [4]. J. Booth called it
the logocyclic curve in his article in the 19th century, [3]. For further information about
contrapedal, radial, inverse, conchoid, and strophoid curve, we recommend the reader to go
through [7], [11], and [25].

The famous book called the Liber Abaci of Italian mathematician Leonardo de Pisa who
is known as Fibonacci also posed a problem concerning the progeny of a single pair of rabbits
which is the foundation of the Fibonacci sequence, [5]. During the time Fibonacci wrote
Liber Abaci, Fibonacci numbers were not recognized as something special. The sequence
was given the current name ”Fibonacci numbers” by French mathematician Edouard Lucas
who later created his own sequence based on the pattern set by Fibonacci. Lucas numbers
are very similar to Fibonacci numbers in that they form a sequence of numbers and also
closely related to Fibonacci numbers, [15].

In 1988, Horadam and Shannon defined Fibonacci and Lucas curves on Euclidean plane,
(see [18]). Moreover, there are many articles about three dimensional Fibonacci curve, (see
[13], [19]). In addition, Akyigit, Erigir and Tosun studied on the evolute, parallel and pedal
of Fibonacci and Lucas curves in 2015, (see [1]). In 2017, Ozvatan and Pashaev had a study
on generalized Fibonacci sequences and Binet-Fibonacci curves, (see [14]). They constructed
Binet-Fibonacci curve in complex plane by extending Binet’s formula to arbitrary real num-
bers. In this article, we are interested in investigation of the contrapedal, radial, inverse,
conchoid and strophoid curves of Fibonacci and Lucas curves and obtaining the figures of

these special curves.
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1.1. Fibonacci and Lucas Numbers. This subsection gives a brief overview of Fibonacci

and Lucas numbers. More detailed information about them can be found in [I0] and [24].

1.1.1. Fibonacci Numbers.

Definition 1.1. The nth Fibonacci number F,, is defined by

Fn: n—1+Fn—2

with initial conditions

P =F=1,
where n > 3. In this case, Fibonacci numbers are given by
1,1,2,3,5,8,13,21,34,55,89,144,233, ..., F,, . ..
The ratio of consecutive Fibonacci numbers gives us a new sequence:

Lemma 1.1. The ratio of two consecutive Fibonacci numbers approaches 1+2\/5 as n — oo.

More precisely,

. Fn+1 1+ \/5
lim = .

n—oo  F, 2

Definition 1.2. The positive root 1+T\/5 = 1.618... of the equation 2> —x — 1 = 0 is called

golden ratio.

Theorem 1.1. Let « and [ be the solutions of the quadratic equation
22—z —1=0; soa = 1+72\/5 and 8 = % Then, the relation that gives us the nth
term of Fibonacci sequence is given by

_an_ﬁn_an_ﬁn

ST RV A

where n > 1.

Corollary 1.1. Let a = 1+2\/g and B = 1_2‘/5. Then,
1. af=—1 2.a+8=1 3. a—-F=+5
4.2+1=Vba 5. a=2-p5% 6.2+p5%2=3
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1.1.2. Lucas Numbers.
Definition 1.3. The nth Lucas number L,, is defined by
Ly=Lp 1+ Lpo

with initial conditions

L1:17 L2:37

where n > 3. In this case, Lucas numbers are given by
1,3,4,7,11,18,29,47,..., L,, ...

Lemma 1.2. The ratio of two consecutive Lucas numbers approaches 1‘*'2—‘/5 asn — oo. That
18,

L, 1
lim 11t \/5

Theorem 1.2. Let « and [ be the solutions of the quadratic equation
22—z —1=0; soa = 1+72\/5 and 8 = % Then, the relation that gives us the nth

term of Lucas sequence is given by
L,=a"+ ",
where n > 0.
1.2. Fibonacci and Lucas Curves.
Definition 1.4. Let I C R be an open interval of R. Then, Fibonacci curve is defined by

f:1— R?

0 — f(0) = (x(0),4(9)),

where

z(0) = (1.1)
and

(1.2)

S

including o = Y22 [18].
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FiGure 1. Fibonacci curve

In the interval I = (2,6), the graph of Fibonacci curve can be seen in Figure[ll By taking
derivative of the equations ([1.1)) and ([1.2]) with respect to 6, we obtain that

de a?la®s + scos(Or) + msin(fr)]
and
—0 .
dy J(0) = a9 — mcos(Om) + ssin()] (1.4)

g V5 ’
where a = 1‘*'2—‘/5 and s = log (1“'2—‘/5> After taking derivative of the equations 1) and
(1.4) with respect to €, we obtain

d’x _ () a(n? — %) cos(07) + a??s* — 2ms sin(6r)] (1.5)
dp? V5
and
@ _0) = a~?[27s cos(Om) 4 (7% — s%) sin(6m)] ? (1.6)
do? V5
[18], [
Definition 1.5. Let I C R be an open interval of R. Then, Lucas curve is defined by
11— R?
0 — 1(0) = (z(0),y(0)),
where
z(0) = of + a=? cos(67) (1.7)
and
y(0) = o~ sin(0n) (1.8)
1+V5

including o = 2 [18].

In the interval I = (1,5), the graph of Lucas curve can be seen in Figure

04 -
02"
00k

-02

-04

FIGURE 2. Lucas curve
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By taking derivative of the equations ([1.7]) and ([1.8) with respect to 6, we obtain that

dr _ ' (0)=a’ [saw — scos(f) — wsin(fm)] (1.9)

and
dy
do

where o = 1“'2‘[ and s = log(

[7r cos(fm) — ssin(fr)], (1.10)

y'(6
N

). After taking derivative of the equations 1' and
(1.10) with respect to 8, we obtain

d’x 0
TE 2" (0) = a? {az s% 4 (52 — 7?) cos(fn) + 2ms sin(&w)} (1.11)
and
d2y " -0 2 2\ .
02 =Y (0) = a~°[ — 2wscos(fm) + (s° — 7°) sin(f7)], (1.12)
[18], [1].

2. THE SPECIAL CURVES OF FIBONACCI CURVE

In this section, we will present the special plane curves of Fibonacci curve by using equa-
tions (L3), (L4), (I5) and (L6).

2.1. The Contrapedal Curve of Fibonacci Curve. The parametric equation of con-

trapedal curve |I| of Fibonacci curve f(f) with respect to point P = (p1,p2) on the plane is

that
Cpy(0) = (A(0), B(0)), (2.13)
where
A(9) — a™? (sa®® + scos(n) + msin(r0)) (vV5s (o — 1) — 5spra’? + alvy)

(6) =p1+ 5(s2 (o + 1) + 2520 (7 sin(70) + s cos(mh)) + 72)

and
B(6) — a~?(m cos(nf) — ssin(r8)) (VBs (' — 1) — 5sp1a® + avy)
(6) =p2 - 5(s2 (o + 1) + 25020 (7 sin(70) + s cos(mh)) + 72)

including

vg = ((\/577040 — bspy — bmpy) sin(O7) + 5(mp2 — sp1) cos(@w)) .
In Figure [3, Fibonacci curve which is represented by blue curve and the contrapedal curves
Cpys(0) of Fibonacci curve f(f) with respect to points (0,6), (3,4) (2,2), and (—1,—-2) is

ILet a(t) = (x(t),y(t)) be a regular plane curve and P be a fixed point on R?. The locus of bases of

perpendicular lines from P = (p1,p2) to a variable normal line to « is contrapedal curve and the equation

of contrapedal curve of a is that Cpa(t) = (f(t),g(t)) where f(t) = p1 + EH= ”“i”(t(;gj;yg))z, p2)y’ () z'(t) and

g(t) =pa + (z(t)— Pl)f(;;)i’(yy((;) p2)y’ (1) '(t), m
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plotted, from top to down respectively. As seen in the figure, in the interval where Fibonacci
curve is injective, whether the contrapedal curve of Fibonacci curve is injective or not depends

on given point P.

-

FI1GURE 3. Fibonacci curve and its contrapedal curves

2.2. The Radial Curve of Fibonacci Curve. The parametric equation of radial curveﬂ

of Fibonacci curve f(f) with respect to point P = (p1, p2) on the plane is that

Ry (0) = (R1(9), R2(0)) , (2.14)
where
_ a~f(mcos(fm) — ssin(0m)) (s? (o + 1) + 2502z + 72)
Ra0) =p1+ V5 (sa?? (72 — 2s2) sin(m) + 3ms cos(Om)) + m (s2 + 72))
and
B o (sa® + scos(Om) + wsin(0r)) (s% (@1 + 1) + 250?29 + 7?)
Ralf) =2t V5 (sa2 (2 — 252) sin(O7) + 3ws cos(O7)) + 7 (s2 + 72))
including

zp = wsin(fm) + s cos(f7).

From the equation (2.14)), we can see that point P plays a role in just the translation of the
created shape. In Figure [4 Fibonacci curve which is represented by blue curve and, from

2Let a(t) = (z(t),y(t)) be a regular plane curve on R?. Suppose that lines are drawn from a fixed
point P = (p1,p2) € R? such that these lines are equal and parallel to the radii of curvature of a(t). The

locus of the end points is radial curve and the equation of radial curve is that R (t) = (f(t),g(t)) where

Vv (0 ()2 +( (1)?) () (= (1) +(' (1)?)

I =r - Zgym—=rmrm 2490 =2+ T ey M-
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left to right respectively, the R;(6) radial curves with respect to (3,1) and (6, 1) points are
plotted by restricting z—axis to (—1,8) interval and y—axis to (—1,3) interval. The figure
indicates that the radial curve of Fibonacci curve is not injective.

¥y
3

B NN
| \

FIGURE 4. Fibonacci curve and its radial curves

2.3. The Inverse Curve of Fibonacci Curve. The parametric equation of inverse curveﬁ

of Fibonacci curve f(6) with respect to point R = (r1,72) and value k is that

Ing(6) = (1(6), 1(0)), 2.15)
where
o —a=%cos(6) — /51
L(0) =7 +k V5 ( 2(9) \/_51) _
(oﬂ —afcos(fr) — \/57”1) + (04_‘9 sin(07) + \/57“2)
and

V5 (e sin(0r) + v/5r2)
(af — a0 cos(Or) — \/57“1)2 + (a9 sin(fr) + \/57"2)2'
The equation (2.15) demonstrates that if the point R is kept constant, the value k£ > 0 has

12(9) =T9 — k

a role in changing the size of the shape. The more we increase the value k, the more the
figure enlarges by preserving its basic form. In contrast, the more we decrease the value k,
the more the size of the shape is dwindled by preserving its basic form. That is, the value k
is the radial ratio. In Figure [5, Fibonacci curve which is represented by blue curve and its
inverse curves Ing(f) with k =5 and k = 9 with respect to the point (2, —1) are plotted.
3Let au(t) = (x(t), y(t)) be a regular plane curve and R = (r1, r2) be a fixed point on R?. Suppose that a line
L is drawn through R by intersecting « at P, and let @ be a point on L so that |RP|.|RQ| = k, a constant.
Then, P and @ are inverse points, and the locus of @ is an inverse of a with respect to R. k may be

negative, in which case P and @ lie on opposite sides of R. The parametric equation of inverse curve of « is

that Ina(t) = (f(¢),g(t)) where f(t) =71 + k(z(t)in;gr(;l(t%Tz)Q and g(t) = ro + k(z(t)ﬂf)(g)g(?(t)fm)Z, [11].
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(A) when R= (2,—1) and k=5 (B) when R=(2,—1) and k=9

FiGURE 5. Fibonacci curve and its inverse curves

Moreover, if one keeps the point R constant and gets the negative of the value k, then the
shape is rotated around the point R at a rotation of 180°.
Firstly, we start to make R become the origin. So,

(I, I5) = (I, I) — (r1,7m2) = (I1 — r1, Is — r2) then we get that

V5 (@ — a7 cos(Om) — v/5ry)
(o — a= cos(fm) — \/57"1) + (a~Ysin(fr) + \/57“2)2’
VB (a7 sin(07) + V/5r2)
(o — a=? cos(O7) — \/57“1)2 + (a9 sin(fm) + \/57“2)2'

=k

Jr——

We know that to rotate a point 180° counterclockwise about the origin, we need to multiply

the z— and y—coordinates by —1 i.e. (z,y) — (—x, —y). Therefore, we get that

V5 (f — a7 cos(9m) — v/5ry)

(af — a9 cos(fr) — \fﬁ) + (a=?sin(f7) + \/57‘2)2’
V5 (a7 sin(07) + v/5r2)

(o — a0 cos(Or) — \/57“1)2 + (a~Ysin(fr) + \/57“2)2.

o=k

=k

Finally, we make the point R center again. So,

", = (I17,15) + (r1,r9) = (I + rq, I, + ro) then we get that
142 1:42 1 2

V5 (aa —a? cos(fm) — \/51“1)
(o — a= cos(Or) — \/57"1)2 + (a~?sin(fm) + \/57“2)2’
V5 (ofe sin(0m) + \/57“2)
(o — a= cos(Or) — \/57"1)2 + (a~%sin(frm) + \/57“2)2'

I/// — 0 —k

(2.16)

I =ro+k
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In addition, if we write —k instead of k in the equation , then we obtain that
V5 (ae —a cos(Om) — \/57"1)
(a? — a=? cos(OT) — \/57’1)2 + (a~?sin(fr) + \/57’2)27
V5 (a™?sin(07) + v/5r2)
(a? — a=? cos(OT) — \/57’1)2 + (a~%sin(fm) + \/57’2)2.
Consequently, from the equations and , we see that the statement is true.

11(9) =71 — k
(2.17)

12(9) =r9+k

In Figure [6] Fibonacci curve which is represented by blue curve and its inverse curves

Ing(0) with k =5 and k = —5 with respect to the point (2, —1) are plotted.

(A) when R=(2,-1) and k=5 (B) when R = (2,—1) and k = -5

FIGURE 6. Fibonacci curve and its inverse curve with negative value k

2.4. The Conchoid Curve of Fibonacci Curve. The parametric equation of conchoid

curvd of Fibonacci curve f(6) with respect to point R = (r1,72) and value k is that
Cy(0) = (cr(0), c2(9)) , (2.18)

where
(¥ — a= cos(0m) — V/5r1)
V5 \/(049 — a9 cos(fr) — \/57“1)2 + (04—9 sin(f7) + \/57"2)2

Let a(t) = (x(t),y(t)) be a regular plane curve and R = (r1,72) be fixed point on R%. Suppose that
a line L is drawn through R by intersecting o at Q. The locus of points P; and P» on L such that
|P1Q| = |QP:| = k, a constant is the conchoid curve of a with respect to R = (r1,7r2). The paramet-

ric equation of conchoid curve of a is Co(t) = (f(t),g(t)) where f(t) = z(t) £ k\/(m(wi:l(il:(';(t)imﬂ and

t)=yt) £k y()—rs , L.
90 =yt k= e e
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and
—aYsin(fr) Tk (=% sin(07) 4+ V/5rs)

c2(0) = .
: V5 \/(049 —a?cos(Or) — \/57"1)2 + (a9 sin(fr) + \/57“2)2

In Figure |7, Fibonacci curve and its conchoid curves Cy(6) with respect to different values k
and the point (5, 3) are plotted. The blue, purple and pink curves in the figure, respectively,
represent Fibonacci curve, the locus of P; and the locus of P,. As it is seen in this figure, if
we fix the point R, whether its conchoid curve is injective or not depends on the value k in

the interval which Fibonacci curve is injective.

y y
6~ 6
4; 4+
[ —
\_/\_5’_/ 1‘0 i 5 10 *
-2r ‘l\/
—4j -4
—67 -6
(A) when R= (5,3) and k=1 (B) when R = (5,3) and k =3
y y
67 6
4: }2 4 ()
27 2
5 1‘0 X 5 10 *
—Zr -2
_eL _6L
(¢) when R = (5,3) and k =4 (D) when R= (5,3) and k=5

FiGURE 7. Fibonacci curve and its conchoid curves
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2.5. The Strophoid Curve of Fibonacci Curve. The parametric equation of strophoid

curvd’| of Fibonacci curve f(6) with respect to points R = (r1,72) and A = (a1, az) is that

S5(0) = (s1(0), 52(0)) , (2.19)
where
- o — a9 cos(0r) — 1) W
51(0) = ol — a\;cos(%r) n ( (92 ) — V/5r1) we :
e \/(049 —a~?cos(fr) —V5r1)” + (—afsin(f1) — V5r2)
and
—0gj —a Vsin(fn) — Vo) w
82(9):70z i:;rg(@ﬂ)i ( (0 )2 Vbry) wy :
\/(049 —afcos(9m) —V5r1)” + (—afsin(fr) — V5ro)

including

wp = \;5\/<\/5a1 —af +a-? cos(¢97r)>2 + (\/5&2 +af? sin(97r))2.

In Figure |8 Fibonacci curve and its strophoid curves S¢(¢) with respect to R = (4,1) and
A = (—1,-1) are plotted. The blue, purple and pink curves, respectively, in the figure
represent Fibonacci curve, the locus of P, and the locus of Ps.

¥y
6r

FIGURE 8. Fibonacci curve and its strophoid curve when R = (4,1) and

A=(-1,-1)

"Let a(t) = (x(t),y(t)) be a regular plane curve and R = (ri,72) and A = (a1,a2) be two fixed
points on R?. Here, the point R is called the pole point. The locus of points P, and P, on a line L
through R and intersecting a at a point Q such that |P.Q| = |QP1| = |QA| is the strophoid curve of a
with respect to R and A. The parametric equation of strophoid curve of « is So(t) = (f(t),g(t)) where

1/2 m 1/2
f(t) =a(t) £ m [(a1 = z())* + (a2 — y(1))*] '~ and g(t) = y(t) £ i [(a1 — 2(8))* + (a2 — y(1))?]

— y(t)—ra [11]

z(t)—r1’

included m
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3. THE SPECIAL CURVES OF LucAs CURVES

In this section, we will find the equations of special plane curves of Lucas curve by using

equations ([1.9), (1.10)), (L.11]) and (1.12)) and give their graphs.

3.1. The Contrapedal Curve of Lucas Curve. The parametric equation of contrapedal

curve of Lucas curve [(#) with respect to point P = (p1,p2) on the plane is that

Cpi(0) = (A(0), B(0)) (3.20)
where
a9 (s0?? — scos(fr) — mwsin(f7)) (s (1 — a® + p1a?) + v
P (6r) — msin(6m) p ;
—n 52 (o + 1) + 72 — 25020 (7 sin(O7) + s cos(0))
and
B(®) = a~f(mcos(fm) — ssin(fn)) (s (1 — o + p1a®?) + afvy)
R s2 (ot +1) + 72 — 25020 (7w sin(O7) + s cos(0))
including

vy = ma sin(Or) + (wpy — sp1) cos(Or) — (wp1 + sp2) sin(O7).

In Figure@ Lucas curve which is represented by blue curve and its contrapedal curves Cp;(0)
with respect to (4,3) and (1, —3) are plotted, from top to down respectively. As it can be
seen in the figure, whether the contrapedal curve of Lucas curve is injective depends on point

P in the interval where Lucas curve is injective.

y
41
2,
- 5 10 15
-2+
4+

FIGURE 9. Lucas curve and its contrapedal curves
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3.2. The Radial Curve of Lucas Curve. The parametric equation of radial curve of

Lucas curve [(#) with respect to point P = (p1,p2) is that

Ry(0) = (R1(0), Ra(0)) (3.21)
where
R (0) — a9 (mcos(Om) — ssin(0m)) (s* (a?? + 1) — 250?029 + 7?)
1(6) =p1 = 7 (s2 4+ 72) — sa?? (72 — 252) sin(f7) + 3ms cos(67))
and
Ra(d) — af (sa? — scos(Or) — wsin(0r)) (s% (@1 + 1) — 250?29 + 7?)

2(0) =p2 + (2 + 72) — sa? (3rs cos(Om) + (w2 — 2s2) sin(67))

including

zp = wsin(fm) + s cos(6m).
It can be understood from the equation that point P plays a role in the translation
of the shape created by radial curve. In Figure Lucas curve which is represented by blue
curve and its radial curves R;(), from left to right respectively, at (—1,2) and (6,2) points
have been plotted by restricting x—axis to (—5,11) interval and y—axis to (—10, 10) interval.
The figure indicates that the radial curve of Lucas curve is not injective.

y
10 -

Al

FI1GURE 10. Lucas curve and its radial curves
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3.3. The Inverse Curve of Lucas Curve. The parametric equation of inverse curve of

Lucas curve [(#) with respect to point R = (r1,72) and value k is that

Iny(0) = (11(0), I2(0)) , (3.22)
where
) _
L(6) = r + & o’ +« 0025(077) 1 i
(a? + a=fcos(Om) —r1)" + (o ?sin(f7) — ro)
and

a~?sin(0m) — 7o
(af + a0 cos(0m) — r1)* + (a0 sin(f7) — 1)
Results obtained by investigating the special cases of value k for the inverse curve of Fibonacci

12(9) =ro+k

curve are also valid for the inverse curve of Lucas curve. In Figure Lucas curve which is
represented by blue curve and its inverse curves In;(f) for k= -5, k=5k=—-9,and k=9

with respect to the point (4, —1) are plotted.

y ¥

(¢) when R=(4,—1) and k = —5 (D) when R= (4,—1) and k = -9

FIGURE 11. Lucas curve and its inverse curves
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3.4. The Conchoid Curve of Lucas Curve. The parametric equation of conchoid curve

of Lucas curve [(#) with respect to point R = (r1,72) and value k is that
Ci(0) = (c1(0), c2(0)) , (3.23)

where

o + a=% cos(Om) — 1

\/(a9 + a0 cos(0r) — r1)? + (asin(O7) — o)’

c1(0) = o + a ¥ cos(m) £ k

and

a~Ysin(0m) — 7o

\/(a9 + a9 cos(fr) — 1) + (a0 sin(f7) — 7"2)2.

c2(0) = a ¥sin(n) + k

In Figure Lucas curve and its conchoid curves Cj(0) with respect to different values k
and the point (4,2) are plotted. The blue, purple and pink curves represent Lucas curve,
the locus of P; and the locus of Ps, respectively, in the figure. As it is seen in this figure,
whether its conchoid curve is injective depends on value k in the interval where Lucas curve

is injective.

—2:’ -2
3t 4
(A) when R = (4,2) and k=1 (B) when R = (4,2) and k = 1.75
y y
4r n
: K ? Q
T 10 5 — 10 5 "
< \_2_/\_/
—4- —ar
(¢) when R = (4,2) and k=3 (D) when R = (4,2) and k =4

FIGURE 12. Lucas curve and its conchoid curves
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3.5. The Strophoid Curve of Lucas Curve. The parametric equation of strophoid curve

of Lucas curve [(#) with respect to points R = (ry,r2) and A = (ay,az) is that

S1(0) = (s1(0), s2(0)) , (3.24)
where
51(0) = o + o cos(fm) + (o +a % cos(fm) — 1) wy
\/ (a? + a0 cos(m) — 1) + (a~? sin(67) — o)’
and N
52(0) = a9 sin(07) & (a~?sin(07) — r2) wp
\/(Oﬂ + a=% cos(Om) — 7"1)2 + (o fsin(0m) — r2)2
including

wy = \/(al —af — a0 cos(6))® + (ag — o~ sin(6))”.
In Figure Lucas curve and its strophoid curves S;(#) with respect to different points R
and A are plotted. The blue, purple and red curves represent Lucas curve, the locus of P; and
the locus of Py, respectively, in the figure. As it is seen in this figure, whether its strophoid
curve has a critical point depends on A and R in the interval where Lucas curve has not any

critical point.

10 15 20

(A) when R = (4,2) and A = (-1, 3)

(B) when R = (1,0) and A = (—3,—4)

F1GURE 13. Lucas curve and its strophoid curves
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4. CONCLUSION

In this study, firstly the notions of contrapedal, radial, inverse, conchoid and strophoid
curves of the Fibonacci and Lucas curves have been investigated. Afterwards, their graphs
which have been plotted by using Mathematica are examined in the interval I = (2,6) for
Fibonacci curve and in the interval I = (1,5) for Lucas curve.

We have obtained some results from the notions and figures which is acquired.

e As illustrated in Figure [3] and Figure [9] if their contrapedal curves are injective or
not depends on given point P in the intervals where Fibonacci and Lucas curves are
injective.

e From equations and , it is clear that the point P has a role in the
translation of the figure which is created. Figure[d and Figure [I0]illustrate that their
radial curves are not injective.

e The equations and reveals that if one fixes the point R, the value k& > 0
has a role in changing the size of inverse curves which belongs to Fibonacci and Lucas
curves. As the value k increases, the size of the shape enlarges by preserving the main
form. Conversely, as the value k decreases, the size becomes smaller by preserving
the main form. Moreover, if one keeps the point R constant and gets the negative of
the value k, then the shape is rotated around the point R at a rotation of 180°.

e From Figure[r|and Figure it can be seen that in the interval where Fibonacci and
Lucas curves are injective, if one fixes the point R, the value k is an important factor
in the injectivity of their conchoid curves.

e It can be observed from Figure that in the interval where Lucas curve has not
any critical point whether its strophoid curve has at least one critical point or not

depends on the given points R and A.
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