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ON THE MANNHEIM PARTNER OF A CUBIC BEZIER CURVE IN E3

ŞEYDA KILIÇOĞLU ID ∗ AND SÜLEYMAN ŞENYURT ID

Abstract. In this study we have examined, Mannheim partner of a cubic Bezier curve

based on the control points with matrix form in E3. Frenet vector fields and also curvatures

of Mannheim partner of the cubic Bezier curve are examined based on the Frenet apparatus

of the first cubic Bezier curve in E3.
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1. Introduction and Preliminaries

French engineer Pierre Bézier, who used Bézier curves to design automobile bodies stud-

ied with them in 1962. But the study of these curves was first developed in 1959 by math-

ematician Paul de Casteljau using de Casteljau’s algorithm, a numerically stable method

to evaluate Bézier curves. A Bézier curve is frequently used in computer graphics and re-

lated fields, in vector graphics, used in animation as a tool to control motion. To guarantee

smoothness, the control point at which two curves meet must be on the line between the two

control points on either side. In animation applications, such as Adobe Flash and Synfig,

Bézier curves are used to outline, for example, movement. Users outline the wanted path in

Bézier curves, and the application creates the needed frames for the object to move along

the path. For 3D animation Bézier curves are often used to define 3D paths as well as 2D
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Şeyda Kılıçoğlu; seyda@baskent.edu.tr; https://orcid.org/0000-0003-0252-1574
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curves for key-frame interpolation. We have been motivated by the following studies. First

Bezier-curves with curvature and torsion continuity has been examined in [6]. Also in [2],

[3] and [7] Bezier curves and surfaces have been given. In [4] Bézier curves are designed for

Computer-Aided Geometric. Recently equivalence conditions of control points and applica-

tion to planar Bezier curves have been examined. In [8] Frenet apparatus of the cubic Bézier

curves has been examined in E3. Before, the 5th order Bézier curve and its, first, second, and

third based on the control points of the 5th order Bézier Curve in E3 are examined too in [12].

We have already examine in cubic Bézier curves and involutes in [8] and [9], respectively.

Also Bertrand mate of a cubic Bezier curve based on the control points with matrix form has

been examined with Frenet apparatus in [11]. Here we will examine the Mannheim partner

of a cubic Bezier curve, based on the control points with matrix representation.

The set, whose elements are Frenet vector fields and the curvatures of a curve α (t) ⊂ E3,

is called Frenet apparatus of the curves. Let α(t) be the curve, with η = ∥α′ (t)∥ ≠ 1 and

Frenet apparatus be {T (t) , N (t) , B (t) , κ (t) , τ (t)}. Frenet vector fields are given for a non

arc-length curve

T (t) =
α′ (t)

∥α′ (t)∥
, N (t) = B (t) ΛT (t) , B (t) =

α′ (t) Λα′′ (t)

∥α′ (t) Λα′′ (t)∥
,

κ (t) =

∥∥∥α′ (t) Λα
′′
(t)

∥∥∥
∥α′ (t)∥3

and τ (t) =

〈
α′ (t) Λα

′′
(t) , α′′′(t)

〉
∥α′ (t) Λα′′ (t)∥2

where κ (t) and τ (t) are curvature functions. Also Frenet formulas are well known as
T ′

N ′

B′

 =


0 ηκ 0

−ηκ 0 ητ

0 −ητ 0




T

N

B

 .

Generally, Béziers curve can be defined by n + 1 control points P0, P1, ..., Pn with the

parametrization

B (t) =
n∑

i=0

(
n

i

)
ti (1− t)n−i [Pi] ,

where

(
n

i

)
=

n!

i!(n− i)!
is known as the usual binomial coefficients. In this study we will

define and work on cubic Bézier curves in E3. For more detail see [1, 8].

Definition 1.1. A cubic Bézier curve is a special Bézier curve and it has only four points

P0, P1, P2 and P3, its parametrization is

α (t) = (1− t)3 P0 + 3t (1− t)2 P1 + 3t2 (1− t)P2 + t3P3
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and matrix form of the cubic Bezier curve with control points P0, P1, P2, P3, is

α (t) =


t3

t2

t

1



T 
−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0




P0

P1

P2

P3

 .

Also using the derivatives of a cubic Bézier curve Frenet apparatus {T,N,B, κ, τ} have

already been given as in the following theorems by using matrix representation. For more

detail see in [8].

The first derivative of a cubic Bézier curve by using matrix representation is

α′(t) =


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




Q0

Q1

Q2



where Q0 = 3 (P1 − P0) = (x0, y0, z0), Q1 = 3 (P2 − P1) = (x1, y1, z1),

Q2 = 3 (P3 − P2) = (x2, y2, z2) are control points.

The second derivative of a cubic Bézier curve by using matrix representation is

α′′(t) =

 t

1

T  −1 1

1 0

 R0

R1



where R0 = 6 (P2 − 2P1 + P0) , R1 = 6 (P3 − 2P2 + P1) are control points.

The third derivative of a cubic Bézier curve is constant by using matrix representation is

α′′′(t) = [R0R1]

with the control point [R0R1] = R1 −R0 = 2 [Q1Q2]− 2 [Q0Q1] .

Frenet apparatus {T (t) , N (t) , B (t) , κ (t) , τ (t)} of a cubic Bézier curve have already been

given as in the following theorems by using the matrix representation. For more detail see

in [9].
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Tangent vector field of a cubic Bezier curve α with, ∥α′∥ = η has the following the matrix

representation

T (t) =
1

η


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




x0 y0 z0

x1 y1 z1

x2 y2 z2



=
1

η


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




Q0

Q1

Q2


=

1

η

(
Q0

(
t2 − 2t+ 1

)
−Q1

(
2t2 − 2t

)
+ t2Q2

)
.

Binormal vector field of a cubic Bezier curve by using the matrix representation is

B (t) =
6

m


t2

t

1


T 

b11 b12 b13

b21 b22 b23

b31 b32 b33



=
6

m

[
t2 t 1

]
B1

B2

B3


=

6

m

(
B1t

2 +B2t+B3

)
where m = ∥α′Λα′′∥ and

b11 = (y0z1 − y1z0 − y0z2 + y2z0 + y1z2 − y2z1) ,

b12 = (x1z0 − x0z1 + x0z2 − x2z0 − x1z2 + x2z1) ,

b13 = (x0y1 − x1y0 − x0y2 + x2y0 + x1y2 − x2y1) ,

b21 = (2y1z0 + y0z2 − 2y0z1 − y2z0) ,

b22 = (2x0z1 − 2x1z0 − x0z2 + x2z0) ,

b23 = (2x1y0 − 2x0y1 + x0y2 − x2y0) ,

b31 = y0z1 − y1z0,

b32 = x1z0 − x0z1,

b33 = x0y1 − x1y0.
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Normal vector field of a cubic Bezier curve is a 4th order Bezier curve and it has the

matrix representation as in

N (t) =
6

ηm



t4

t3

t2

t

1



T 

n11 n12 n13

n21 n22 n23

n31 n32 n33

n41 n42 n43

n51 n52 n53



=
6

ηm



t4

t3

t2

t

1



T 

N0

N1

N2

N3

N4


=

6

ηm

(
N0t

4 +N1t
3 +N2t

2 +N3t+N4

)
where

n11 = b12d13 − b13d12,

n21 = b12d23 − b13d22 + b22d13 − b23d12,

n31 = b12d33 − b13d32 + b22d23 − b23d22 + b32d13 − b33d12,

n41 = b22d33 − b23d32 + b32d23 − b33d22,

n51 = b32d33 − b33d32,

n12 = b11d13 − b13d11,

n22 = −b11d23 − b21d13 + b13d21 + b23d11,

n32 = b23d21 + b33d11 − b11d33 − b21d23 + b13d31 − b31d13,

n42 = −b21d33 − b31d23 + b23d31 + b33d21,

n52 = −b31d33 + b33d31,

n13 = b11d12 − b12d11,

n23 = b11d22 − b12d21 + b21d12 − b22d11,

n33 = b11d32 − b12d31 + b21d22 − b22d21 + b31d12 − b32d11,
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n43 = b21d32 − b22d31 + b31d22 − b32d21,

n53 = b31d32 − b32d31.

The first and second curvatures of a cubic Bezier curve by using the matrix representation

are

κ (t) =
6

η3



t4

t3

t2

t

1



T 

b211 + b212 + b213

2b11b21 + 2b12b22 + 2b13b23

2b11b31 + 2b12b32 + 2b13b33 + b221 + b222 + b223

2b21b31 + 2b22b32 + 2b23b33

b231 + b232 + b233



=
6

η3



t4

t3

t2

t

1



T 

C1

C2

C3

C4

C5


=

6

η3
(
C1t

4 + C2t
3 + C3t

2 + C4t+ C5

)
where

C1 = b211 + b212 + b213,

C2 = 2b11b21 + 2b12b22 + 2b13b23,

C3 = 2b11b31 + 2b12b32 + 2b13b33 + b221 + b222 + b223,

C4 = 2b21b31 + 2b22b32 + 2b23b33,

C5 = b231 + b232 + b233,

and

τ (t) =
x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

m2
.

2. Mannheim partner of a cubic Bezier curve

Mannheim curve was firstly defined by A. Mannheim in 1878. A curve is called a

Mannheim curve if and only if
κ

κ2 + τ2
is a nonzero constant, κ is the curvature and τ

is the torsion. Mannheim curve was redefined as; if the principal normal vector of first

curve and binormal vector of second curve are linearly dependent, then first curve is called

Mannheim curve, and the second curve is called Mannheim partner curve by Liu and Wang.

As a result they called these new curves as Mannheim partner curves. For more detail see
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[10]. α∗ (t) = α (t) + µ (t)B∗ (t) , N = B∗. Hence α∗ (t) = α (t) + µ (t)N (t). We know for a

Mannheim curve α, that µ is constant.

Since
dα∗

dt
= ηT+µ̇ (t)N (t)+ηµ (−κT + τB) ,

dα∗

dt
⊥ B∗ and

dα∗

dt
⊥ N, we get µ is constant.

Also dtds∗ =
1

cos θ
and |µ| is the distance between the curves α and α∗. Also we can write

dt

ds∗
=

1√
1 + µτ

.

Theorem 2.1. The Mannheim partner of a cubic Bezier curve has the following matrix

representation

α∗ =



t4

t3

t2

t

1



T 

6µ
ηmN0

6µ
ηmN1 + P3 + 3P1 − 3P2 − P0

6µ
ηmN2 + 3P2 − 6P1 + 3P0

6µ
ηmN3 + 3P1 − 3P0

6µ
ηmN4 + P0


.

Proof. Let α∗ = α (t) + µN be Mannheim partner of a cubic Bezier curve α (t) ,

hence

α∗ =


t3

t2

t

1



T 
−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0




P0

P1

P2

P3

+
6µ

ηm



t4

t3

t2

t

1



T 

N0

N1

N2

N3

N4



= P2

(
3t2 − 3t3

)
+ t3P3 + P0

(
−t3 + 3t2 − 3t+ 1

)
+ P1

(
3t3 − 6t2 + 3t

)
+

6

m

µ

η
N4 +

6

m
t
µ

η
N3 +

6

m
t2
µ

η
N2 +

6

m
t3
µ

η
N1 +

6

m
t4
µ

η
N0

= t4
6µ

mη
N0 + t3

(
6µ

mη
N1 + P3 + 3P1 − 3P2 − P0

)
+ t2

(
6µ

mη
N2 + 3P2 − 6P1 + 3P0

)
+ t

(
6µ

mη
N3 + 3P1 − 3P0

)
+

6µ

ηm
N4 + P0.
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So we can write this as in the following matrix form

α∗ =



t4

t3

t2

t

1



T 

6µ
ηmN0

6µ
ηmN1 + P3 + 3P1 − 3P2 − P0

6µ
ηmN2 + 3P2 − 6P1 + 3P0

6µ
ηmN3 + 3P1 − 3P0

6µ
ηmN4 + P0


.

Theorem 2.2. The Mannheim partner of a cubic Bezier curve is a 4th order Bezier curve

with constant speed. It has the control points P ∗
0 , P

∗
1 , P

∗
2 , P

∗
3 and P ∗

4 based on the control

points of the cubic Bezier curve, as in the following way, where η,m are constants,



P ∗
0

P ∗
1

P ∗
2

P ∗
3

P ∗
4


=



P0 +
6µ
mηN4

1
4P0 +

3
4P1 +

3µ
2mηN3 +

6µ
mηN4

1
2P1 +

1
2P2 +

µ
mηN2 +

3µ
mηN3 +

6µ
mηN4

3
4P2 +

1
4P3 +

3µ
2mηN1 +

3µ
mηN2 +

9µ
2mηN3 +

6µ
mηN4

P3 +
6µ
mηN0 +

6µ
mηN1 +

6µ
mηN2 +

6µ
mηN3 +

6µ
mηN4


.

Proof. Let P ∗
0 , P

∗
1 , P

∗
2 , P

∗
3 and P ∗

4 be the control points of 4th order Bezier curve

which is Mannheim partner of a cubic Bezier curve, so we can write



1 −4 6 −4 1

−4 12 −12 4 0

6 −12 6 0 0

−4 4 0 0 0

1 0 0 0 0





P ∗
0

P ∗
1

P ∗
2

P ∗
3

P ∗
4


=



6µ
mηN0

+ 6µ
mηN1 + P3 − 3P2 − P0 + 3P1

+ 6µ
mηN2 + 3P2 + 3P0 − 6P1

+ 6µ
mηN3 + 3P1 − 3P0

+ 6µ
mηN4 + P0


.

By using the following inverse matrix



0 0 0 0 1

0 0 0 1
4 1

0 0 1
6

1
2 1

0 1
4

1
2

3
4 1

1 1 1 1 1


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we obtain 

P ∗
0

P ∗
1

P ∗
2

P ∗
3

P ∗
4


=



0 0 0 0 1

0 0 0 1
4 1

0 0 1
6

1
2 1

0 1
4

1
2

3
4 1

1 1 1 1 1





6µ
mηN0

+ 6µ
mηN1 + P3 − 3P2 − P0 + 3P1

+ 6µ
mηN2 + 3P2 + 3P0 − 6P1

+ 6µ
mηN3 + 3P1 − 3P0

+ 6µ
mηN4 + P0


which completes the proof.

Furthermore, the equality
κ

κ2 + τ2
=constant is known as the offset property, for some

non-zero constant. For some function µ, since N and B∗ are linearly dependent, equation

can be rewritten as α∗ (t) = α (t) − µN (t) where µ =
−κ

κ2 + τ2
. Frenet-Serret apparatus of

Mannheim partner curve α∗, based on Frenet-Serret vectors of Mannheim curve α are

T ∗ = cos θ T − sin θ B,

N∗ = sin θ T + cos θB,

B∗ = N,

µ =
−κ

κ2 + τ2

where θ = ∢(T, T ∗).

Theorem 2.3. Tangent vector field of Mannheim partner of a cubic Bezier curve based on

the angle θ is

T ∗ =


t2

t

1


T 

1
η (9P1 − 3P0 − 9P2 + 3P3) cos θ − 6

mB1 sin θ

1
η (6P0 − 12P1 + 6P2) cos θ − 6

mB2 sin θ

1
η3 (P1 − P0) cos θ − 6

mB3 sin θ

 .

Proof. Since T ∗ = cos θ T − sin θ B, we have

T ∗ =
1

η

(
Q0

(
t2 − 2t+ 1

)
−Q1

(
2t2 − 2t

)
+ t2Q2

)
cos θ −

(
6

m

(
B1t

2 +B2t+B3

))
sin θ

=
1

η

(
t2Q0 cos θ − 2t2Q1 cos θ + t2Q2 cos θ

)
− 6

m
t2B1 sin θ

+
1

η
(−2Q0t cos θ + 2Q1t cos θ)−

6

m
tB2 sin θ

+
1

η
Q0 cos θ −

6

m
B3 sin θ.
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Therefore, based on the control points Q0, Q1, Q2, the following matrix representation can

be written as

T ∗ =


t2

t

1


T 

1
η (Q0 − 2Q1 +Q2) cos θ − 6

mB1 sin θ

1
η (−2Q0 + 2Q1) cos θ − 6

mB2 sin θ

1
ηQ0 cos θ − 6

mB3 sin θ

 .

Also it can be written in the following matrix representation, based on the control points

P0, P1, P2, P3

T ∗ =


t2

t

1


T 

1
η (3 (P1 − P0)− 6 (P2 − P1) + 3 (P3 − P2)) cos θ − 6

mB1 sin θ

1
η (−6 (P1 − P0) + 6 (P2 − P1)) cos θ − 6

mB2 sin θ

1
η3 (P1 − P0) cos θ − 6

mB3 sin θ



=


t2

t

1


T 

1
η (9P1 − 3P0 − 9P2 + 3P3) cos θ − 6

mB1 sin θ

1
η (6P0 − 12P1 + 6P2) cos θ − 6

mB2 sin θ

1
η3 (P1 − P0) cos θ − 6

mB3 sin θ

 .

Corollary 2.1. Tangent vector field of Mannheim partner can be written as in the following

way where η,m are constants

T ∗ =


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




1
mη (mQ0 cos θ − 6ηB3 sin θ)

− 1
mη (3ηB2 sin θ −mQ1 cos θ + 6ηB3 sin θ)

− 1
mη (6ηB1 sin θ −mQ2 cos θ + 6ηB2 sin θ + 6ηB3 sin θ)

 .

Proof. As a quadratic Bezier curve, tangent vector field of Mannheim partner of a

cubic Bezier curve with the control points Q∗
0, Q

∗
1, Q

∗
2 is

T ∗ =


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




Q∗
0

Q∗
1

Q∗
2

 .

Hence, by using the inverse matrix the control points are
Q∗

0

Q∗
1

Q∗
2

 =


0 0 1

0 1
2 1

1 1 1




1
η (Q0 − 2Q1 +Q2) cos θ − 6

mB1 sin θ

1
η (−2Q0 + 2Q1) cos θ − 6

mB2 sin θ

1
ηQ0 cos θ − 6

mB3 sin θ



=


1
mη (mQ0 cos θ − 6ηB3 sin θ)

− 1
mη (3ηB2 sin θ −mQ1 cos θ + 6ηB3 sin θ)

− 1
mη (6ηB1 sin θ −mQ2 cos θ + 6ηB2 sin θ + 6ηB3 sin θ)

 .
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Theorem 2.4. Normal vector field of Mannheim partner of a cubic Bezier curve based on

the angle θ is

N∗ =


t2

t

1


T 

1
η (9P1 − 3P0 − 9P2 + 3P3) sin θ +

6
mB1 cos θ

+ 1
η (6P0 − 12P1 + 6P2) sin θ +

6
mB2 cos θ

+ 1
η3 (P1 − P0) sin θ +

6
mB3 cos θ

 .

Proof. Since N∗ = sin θ T + cos θ B, we have

N∗ =
1

η

(
Q0

(
t2 − 2t+ 1

)
−Q1

(
2t2 − 2t

)
+ t2Q2

)
sin θ +

6

m

(
B1t

2 +B2t+B3

)
cos θ

=
1

η

(
t2Q0 sin θ − 2t2Q1 sin θ + t2Q2 sin θ

)
+

6

m
t2B1 cos θ

+
1

η
(−2tQ0 sin θ + 2tQ1 sin θ) +

6

m
tB2 cos θ

+
1

η
Q0 sin θ +

6

m
B3 cos θ.

It can be written in the following matrix representation, based on the control pointsQ0, Q1, Q2

N∗ =


t2

t

1


T 

1
η (Q0 − 2Q1 +Q2) sin θ +

6
mB1 cos θ

+ 1
η (−2Q0 + 2Q1) sin θ +

6
mB2 cos θ

+ 1
ηQ0 sin θ +

6
mB3 cos θ

 .

Also it can be written in the following matrix representation, based on the control points

P0, P1, P2, P3

N∗ =


t2

t

1


T 

1
η (9P1 − 3P0 − 9P2 + 3P3) sin θ +

6
mB1 cos θ

+ 1
η (6P0 − 12P1 + 6P2) sin θ +

6
mB2 cos θ

+ 1
η3 (P1 − P0) sin θ +

6
mB3 cos θ

 .

This completes the proof.

Corollary 2.2. Normal vector field of Mannheim partner of a cubic Bezier can be written

as in the following way, where η,m are constants

N∗ =


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




1
mη (mQ0 sin θ + 6ηB3 cos θ)

1
mη (mQ1 sin θ + 3ηB2 cos θ + 6ηB3 cos θ)

1
mη (mQ2 sin θ + 6ηB1 cos θ + 6ηB2 cos θ + 6ηB3 cos θ)

 .
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Proof. As a quadratic Bezier curve normal vector field of Mannheim partner of a

cubic Bezier curve with the control points N∗
0 , N

∗
1 , N

∗
2 is

N∗ =


t2

t

1


T 

1 −2 1

−2 2 0

1 0 0




N∗
0

N∗
1

N∗
2

 .

Hence, using the inverse matrix the control points are
N∗

0

N∗
1

N∗
2

 =


0 0 1

0 1
2 1

1 1 1




1
η (Q0 − 2Q1 +Q2) sin θ +

6
mB1 cos θ

+ 1
η (−2Q0 + 2Q1) sin θ +

6
mB2 cos θ

+ 1
ηQ0 sin θ +

6
mB3 cos θ



=


1
mη (mQ0 sin θ + 6ηB3 cos θ)

1
mη (mQ1 sin θ + 3ηB2 cos θ + 6ηB3 cos θ)

1
mη (mQ2 sin θ + 6ηB1 cos θ + 6ηB2 cos θ + 6ηB3 cos θ)

 .

This completes the proof.

Theorem 2.5. Binormal vector field of Mannheim partner of a cubic Bezier curve based on

the angle θ are

B∗ = N

=
6µ

ηm

(
N0t

4 +N1t
3 +N2t

2 +N3t+N4

)
.

Theorem 2.6. The curvature and the torsion of Mannheim partner of a cubic Bezier curve

based on the angle θ are have the following equalities,

Proof. Since

κ (t) =
6

η3
(
C1t

4 + C2t
3 + C3t

2 + C4t+ C5

)
where

C1 = b211 + b212 + b213,

C2 = 2b11b21 + 2b12b22 + 2b13b23,

C3 = 2b11b31 + 2b12b32 + 2b13b33 + b221 + b222 + b223,

C4 = 2b21b31 + 2b22b32 + 2b23b33,

C5 = b231 + b232 + b233

and

τ (t) =
x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

m2
.
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The curvature and the torsion have the following equalities of Mannheim partner of a cubic

Bezier curve;

κ∗ = − dθ

ds∗
=

θ̇

cos θ
,

τ∗ =
κ

µτ

=

6
η3

(
C1t

4 + C2t
3 + C3t

2 + C4t+ C5

)
µ

(
x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

m2

)

=
6m2

µη3
C1t

4 + C2t
3 + C3t

2 + C4t+ C5

x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0
.

Theorem 2.7. Frenet vector fields {T ∗, N∗, B∗} of Mannheim partner of any cubic Bezier

curve in E3are

T ∗ =


t2

t

1


T 

(1−µκ)
η (9P1 − 3P0 − 9P2 + 3P3) +

6µτ
m B1

(1−µκ)
η (6P0 − 12P1 + 6P2) +

6µτ
m B2

(1−µκ)
η 3 (P1 − P0) +

6µτ
m B3


√

(1− µκ)2 + (µτ)2
,

N∗ =


t2

t

1


T 

µτ
η (9P1 − 3P0 − 9P2 + 3P3)− 6(1−µκ)

m B1

µτ
η (6P0 − 12P1 + 6P2)− 6(1−µκ)

m B2

µτ
η 3 (P1 − P0)− 6(1−µκ)

m B3


√

(1− µκ)2 + (µτ)2
,

B∗ =
6

ηm



t4

t3

t2

t

1



T 

N0

N1

N2

N3

N4


.
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Proof. Let a curve α∗ be a Mannheim partner of α with Frenet-Serret apparatus,

then

T ∗ =
(1− µκ)T + µτB√
(1− µκ)2 + (µτ)2

,

N∗ =
µτT − (1− µκ)B√
(1− µκ)2 + (µτ)2

,

B∗ = N,

dt

ds∗
=

1

η
√
(1− µκ)2 + (µτ)2

.

Tangent vector field of Mannheim partner of a cubic Bezier curve is

T ∗ =

(1−µκ)
η

(
Q0

(
t2 − 2t+ 1

)
−Q1

(
2t2 − 2t

)
+ t2Q2

)
+ µτ 6

m

(
B1t

2 +B2t+B3

)√
(1− µκ)2 + (µτ)2

=

(1−µκ)
η

(
Q0 − 2tQ0 + 2tQ1 + t2Q0 − 2t2Q1 + t2Q2

)
+
(
6µτ
m B1t

2 + 6µτ
m B2t+

6µτ
m B3

)
√
(1− µκ)2 + (µτ)2

.

Hence its matrix representation, based on the control points Q0, Q1, Q2 is

T ∗ =


t2

t

1


T


(1− µκ)

η
(Q0 − 2Q1 +Q2) +

6µτ

m
B1

(1− µκ)

η
(−2Q0 + 2Q1) +

6µτ

m
B2

(1− µκ)

η
(Q0) +

6µτ

m
B3


√
(1− µκ)2 + (µτ)2

,

and based on the control points P0, P1, P2, P3 is

T ∗ =


t2

t

1


T


(1− µκ)

η
(9P1 − 3P0 − 9P2 + 3P3) +

6µτ

m
B1

(1− µκ)

η
(6P0 − 12P1 + 6P2) +

6µτ

m
B2

(1− µκ)

η
3 (P1 − P0) +

6µτ

m
B3


√
(1− µκ)2 + (µτ)2

.

So the normal vector field of Mannheim partner of a cubic Bezier curve is

N∗ =
µτT − (1− µκ)B√
(1− µκ)2 + (µτ)2

=

µτ
η

(
Q0

(
t2 − 2t+ 1

)
−Q1

(
2t2 − 2t

)
+ t2Q2

)
− (1− µκ) 6

m

(
B1t

2 +B2t+B3

)√
(1− µκ)2 + (µτ)2

.
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Hence its matrix representation is

N∗ =


t2

t

1


T


µτ

η

(
Q0 − 2Q1 + t2Q2

)
− 6 (1− µκ)

m
B1

µτ

η
(−2Q0 + 2Q1)−

6 (1− µκ)

m
B2

µτ

η
Q0 −

6 (1− µκ)

m
B3


√
(1− µκ)2 + (µτ)2

,

N∗ =


t2

t

1


T


µτ

η
(9P1 − 3P0 − 9P2 + 3P3)−

6 (1− µκ)

m
B1

µτ

η
(6P0 − 12P1 + 6P2)−

6 (1− µκ)

m
B2

µτ

η
3 (P1 − P0)−

6 (1− µκ)

m
B3


√

(1− µκ)2 + (µτ)2
.

Also, since B∗ = N, its matrix representation is trivial.

Theorem 2.8. The second curvature τ∗ of Mannheim partner of any cubic Bezier curve is

τ∗ =

√√√√√√
(
x0y1z2 − x0y2z1 − x1y0z2 + x1y2z0 + x2y0z1 − x2y1z0

m2

)2

−
(

6
η3
C1t

4 + C2t
3 + C3t

2 + C4t+ C5

)2

√
(1− µκ)2 + (µτ)2

.

Proof. Since
dB∗

ds∗
=

dB∗

dt

dt

ds∗
= −τ∗N∗ and ⟨−τ∗N∗,−τ∗N∗⟩ = τ∗2 we have

τ∗ =

√
τ2 − κ2√

(1− µκ)2 + (µτ)2
, τ > κ.

By using κ (t) and τ (t) of any cubic Bezier curve, we get the proof.
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