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POINTWISE SEMI-SLANT SUBMERSIONS WHOSE TOTAL

MANIFOLDS ARE LOCALLY PRODUCT RIEMANNIAN MANIFOLDS

CEM SAYAR∗, FATMA ÖZDEMIR AND HAKAN METE TAS. TAN

Abstract. In this paper, we study pointwise semi-slant submersions from locally product

Riemannian manifolds onto Riemannian manifolds. We give example and necessary and

sufficient conditions for the integrability and totally geodesicness of all distributions which

are mentioned in the definition of the pointwise semi-slant submersion. Moreover, we give a

characterization theorem for the proper pointwise semi-slant submersions with totally um-

bilical fibers and first variational formula on the fibers of a pointwise semi-slant submersion.

In the view of that formula, finally we obtain necessary and sufficient condition which is

new approach to check the harmonicity of a pointwise semi-slant submersion.

1. Introduction

The theory of submanifolds is a very productive area in differential geometry. In the virtue

of a smooth map between Riemannian manifolds, a submersion is one of the some ways to

get a submanifold. Riemannian submersions were studied first by O’Neill [19] and Gray

[11]. Later Riemannian submersions considered with differentiable structures of manifolds.

Watson [32] defined submersions between almost Hermitian manifolds by taking account of

almost complex structure of total manifold.
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In this case, the vertical and horizontal distributions are invariant. Afterwards, almost

Hermitian submersions have been extensively studied different subclasses of almost Hermitian

manifolds, for example; see [9].

The notion of anti-invariant submersion from an almost Hermitian manifold onto a Rie-

mannian manifold was first defined by S. ahin [22]. He also studied such submersions from

Kählerian manifolds onto Riemannian manifolds. In this case, the fibers are anti-invariant

with respect to the almost complex structure of the total manifold of the submersion. More-

over, he studied slant [24] and semi-invariant submersions [26] under new conditions. A

Lagrangian submersion [22, 28] is a special case of an anti-invariant Riemannian submersion

such that the complex or almost complex structure of the total manifold reverses the vertical

and horizontal distributions to each other.

Recently, it has been defined and studied that there are several new Riemannian submer-

sions between different types of manifolds; such as slant submersions [24, 14], semi-invariant

submersions [21, 26], generic submersions [2, 5], semi-slant submersions [20], pointwise slant

submersions [18], anti-invariant submersions [13, 30], hemi-slant submersions [4, 29], para-

contact para-complex semi-Riemannian submersions [15, 16], conformal semi-slant submer-

sions [1], semi-slant ξ⊥− Riemannian submersions [3]. We note that some of these submer-

sions have been extended to the subclasses of almost contact manifolds, for example; see

[8, 27]. Recent developments on the theory of submersion could be found in the book, [23].

In the present paper, we consider pointwise semi-slant Riemannian submersions from lo-

cally product Riemannian manifolds onto Riemannian manifolds. The paper is organized as

follows. In section 2, we recall the fundamental equations and notions of a Riemannian sub-

mersion. In section 3, we will provide a brief view of locally product Riemannian manifolds.

We study on pointwise semi-slant submersions and give necessary and sufficient conditions for

the integrability and geodesicness of the distributions which are mentioned in section 4. In

particular, we give a characterization theorem for the totally umbilical fibers of the pointwise

semi-slant submersions and some results for pointwise semi-slant submersions with parallel

canonical structures in section 5. The last section of this paper includes a new notion. We

define the first variational formula on the fibers of the pointwise semi-slant submersions. By

the virtue of this formula, we prove a theorem for the harmonicity of such submersions and

give some interesting results.
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2. Riemannian submersions

In this section, we give necessary background for Riemannian submersions.

Let (M, g) and (N, gN) be Riemannian manifolds, where

dim(M) > dim(N). A surjective mapping π : (M, g) → (N, gN ) is called a Riemannian

submersion [19] if

(S1) π has maximal rank, and

(S2) π∗, restricted to kerπ⊥∗ , is a linear isometry.

In this case, for each q ∈ N , π−1
q = π−1(q) is a k-dimensional submanifold of M and called

a fiber, where k = dim(M)−dim(N). A vector field on M is called vertical (resp. horizontal)

if it is always tangent (resp. orthogonal) to fibers. A vector field X on M is called basic if X

is horizontal and π-related to a vector field X∗ on N, i.e., π∗Xp = X∗π(p) for all p ∈ M. We

will denote by V and H the projections on the vertical distribution kerπ∗, and the horizontal

distribution (kerπ∗)
⊥, respectively. As usual, the manifold (M, g) is called total manifold

and the manifold (N, gN ) is called base manifold of the submersion π : (M, g) → (N, gN ).

The geometry of Riemannian submersions is characterized by O’Neill’s tensors T and A,

defined as follows:

TŪ V̄ = V∇VŪHV̄ +H∇VŪVV̄ , (2.1)

AŪ V̄ = V∇HŪHV̄ +H∇HŪVV̄ (2.2)

for any vector fields Ū and V̄ on M, where ∇ is the Levi-Civita connection of g. It is easy

to see that TŪ and AV̄ are skew-symmetric operators on the tangent bundle of M reversing

the vertical and the horizontal distributions. We now summarize the properties of the tensor

fields T and A. Let V,W be vertical and X,Y be horizontal vector fields on M , then we

have

TVW = TWV, (2.3)

AXY = −AYX =
1

2
V[X,Y ]. (2.4)
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On the other hand, from (2.1) and (2.4), we obtain

∇VW = TVW + ∇̂VW, (2.5)

∇VX = TVX +H∇VX, (2.6)

∇XV = AXV + V∇XV, (2.7)

∇XY = H∇XY +AXY, (2.8)

where ∇̂VW = V∇VW . Moreover, if X is basic, then we have

H∇VX = AXV. (2.9)

Remark 2.1. In this paper, we accept all horizontal vector fields as basic vector fields.

It is not difficult to observe that T acts on the fibers as the second fundamental form while

A acts on the horizontal distribution and measures of the obstruction to the integrability

of this distribution. For details on the Riemannian submersions, we refer to O’Neill’s paper

[19] and to the book [9].

Finally, we recall that the notion of the second fundamental form of a map between

Riemannian manifolds. Let (M, g) and (N, gN) be Riemannian manifolds and ϕ : (M, g) →

(N, gN) be a smooth map. Then, the second fundamental form of ϕ is given by

(∇ϕ∗)(E,F ) = ∇ϕEϕ∗F − ϕ∗(∇EF )

for E,F ∈ Γ(TM), where ∇ϕ is the pull back connection and we denote for convenience by

∇ the Riemannian connections of the metrics g and gN . It is well known that the second

fundamental form is symmetric [6]. Moreover, ϕ is said to be totally geodesic if (∇ϕ∗)(E,F ) =

0 for all E,F ∈ Γ(TM), and ϕ is called a harmonic map if trace(∇ϕ∗) = 0 [6].

3. Locally Product Riemannian manifolds

Let M be an m-dimensional manifold with a tensor field of type (1,1) such that

F 2 = I, (F 6= ±I) , (3.10)



POINTWISE SEMI-SLANT SUBMERSIONS 95

where I is the identity morphism on the tangent bundle TM of M . Then we say that M is

an almost product manifold with almost product structure F. If an almost product manifold

denoted by (M,F ) admits a Riemannian metric g such that

g(FŪ, F V̄ ) = g(Ū , V̄ ) (3.11)

for all Ū , V̄ ∈ Γ(TM), then M is called an almost product Riemannian manifold.

Next, we denote by ∇ the Riemannian connection with respect to g on M . We say that

M is a locally product Riemannian manifold, (briefly, l.p.R. manifold) if we have

(∇Ū F )V̄ = 0 (3.12)

for all Ū , V̄ ∈ Γ(TM) [33].

Finally, recall that, if a manifold M can be written as a product of two totally geodesic

submanifolds of it, then M is called a locally product of two submanifolds.

4. Pointwise Semi-Slant submersions

In this section, we will define pointwise semi-slant submersion and study on geometry of

it. Before we start, we remind the definition of pointwise slant submersion.

Definition 4.1. ([18]) Let π be a Riemannian submersion from an almost Hermitian man-

ifold (M, g, J) onto a Riemannian manifold (N, gN ). If, at each given point p ∈ M , the

Wirtinger angle θ(V ) between JV and the space (kerπ∗)p is independent of the choice of the

nonzero vector V ∈ (kerπ∗), then we say that π is a pointwise slant submersion. In this

case, the angle θ can be regarded as a function on M , which is called the slant function of

the pointwise slant submersion.

Now, we define a new kind of submersion as in the following.

Definition 4.2. Let (M, g, F ) be a l.p.R. manifold and (N, gN) be a Riemannian manifold. A

Riemannian submersion π : (M, g, F )→ (N, gN) is called a pointwise semi-slant Riemannian

submersion, if there is a distribution D ⊂ kerπ∗ such that

kerπ∗ = D ⊕Dθ , FD = D , (4.13)

where Dθ is orthogonal complement of D in kerπ∗ and the angle θ = θ(X) between FX and

the space (Dθ)p is independent of the choice of nonzero vector X ∈ Γ((Dθ)p) for p ∈ M i.e.
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θ is a function on M , which is called slant function of the pointwise semi-slant submersion.

We say that π is proper if the slant function is θ 6= 0 and θ 6= π/2.

Remark 4.1. From now on, instead of pointwise semi-slant Riemannian submersion, we

will use briefly pointwise semi-slant submersion.

In this case, for any V ∈ Γ(kerπ∗) , we have

V = PV +QV, (4.14)

where PV ∈ Γ(D) and QV ∈ Γ(Dθ).

For V ∈ Γ(kerπ∗), we have

FV = φV + ωV, (4.15)

where φV ∈ Γ(kerπ∗) and ωV ∈ Γ(kerπ⊥∗ ).

For ξ ∈ Γ(kerπ⊥∗ ), we have

Fξ = Bξ + Cξ, (4.16)

where Bξ ∈ kerπ∗ and Cξ ∈ (kerπ⊥∗ ).

For any E ∈ Γ(TM), we obtain

E = VE +HE, (4.17)

where VE ∈ Γ(kerπ∗) and HE ∈ Γ(kerπ⊥∗ ).

Therefore, the horizontal distribution (kerπ∗)
⊥ is decomposed as

kerπ⊥∗ = ωDθ ⊕ µ , (4.18)

where µ is the orthogonal complementary distribution of ωDθ in (kerπ⊥∗ ), and it is invariant

with respect to F .

Example. Consider the Euclidean 6-space R6 with usual metric g. Define the almost product

structure F on (R6, g) by

F∂1 = ∂2, F∂2 = ∂1, F∂3 = ∂4, F∂4 = ∂3, F∂5 = ∂5, F∂6 = −∂6,

where ∂i = ∂
∂xi

, i = 1, · · · , 6 and (x1, x2, · · · , x6) are natural coordinates of R6. Now, we

define a map π : R6 → R3 by

π(x1, · · · , x6) =
(
f1, f2, f3),
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where

f1 = (x1 + (
√

2− 1)x2 − x3 + x4 + x6),

f2 = (
(x1)2

2
+ (
√

2− 1)x2 −
(x3)2

2
+ x4 − x6),

f3 = (x1 + (
√

2− 1)x2 − x3 − x4 + x6),

and x1 6= x3. Then, the Jacobian matrix of π is:
1
√

2− 1 −1 1 0 1

x1

√
2− 1 −x3 1 0 −1

1
√

2− 1 −1 −1 0 1

 . (4.19)

Since the rank of this matris is equal to 3, the map π is a submersion. After some calculations,

we see that

kerπ∗ = D ⊕Dθ ,

where

D = span{∂5},

and

Dθ = span{ 1√
2
∂1 +

1√
2
∂2 + ∂3, x3∂1 + x1∂3}.

Moreover, the slant function of Dθ is θ = arccos(1
2

x3√
(x1)2+(x3)2

). By direct calculation, we

see that π satisfies the condition (S2). Hence the map π is a proper pointwise semi-slant

submersion with the slant function θ.

Using (3.10), (4.15) and (4.16), we get the following useful facts.

Lemma 4.1. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN).Then, we have

(a) φ2 + Bω = I, (b) ωφ+ Cω = 0,

(c) φB + BC = 0, (d) ωB + C2 = I,

where I is the identity operator on TM .

By using (4.13)∼(4.18), we get the following two results.
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Lemma 4.2. Let π be a pointwise semi-slant Riemannian submersion from a l.p.R. manifold

(M, g, F ) onto a Riemannian manifold (N, gN).Then, we have

(a) φD = D (b) φDθ ⊂ Dθ (c) ωD = {0}.

Lemma 4.3. Let π be a pointwise semi-slant Riemannian submersion from a l.p.R. manifold

(M, g, F ) onto a Riemannian manifold (N, gN).Then, we have

(a) B(FDθ) = Dθ (b) Bµ = {0} (c) C(FDθ) = ωDθ (d) Cµ = µ.

Now we investigate the effect of the almost product structure F on the O’Neill’s tensors

T and A of a pointwise semi-slant Riemannian submersion

π : (M, g, F )→ (N, gN).

Lemma 4.4. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN). Then, we have

∇̂V φW + TV ωW = φ∇̂VW + BTVW, (4.20)

TV φW +H∇V ωW = ω∇̂VW + CTVW, (4.21)

V∇ξBη +AξCη = φAξη + BH∇ξη, (4.22)

AξBη +H∇ξCη = ωAξη + CH∇ξη, (4.23)

∇̂V Bξ + TV Cξ = φTV ξ + BH∇V ξ, (4.24)

TV Bξ +H∇V Cξ = ωTV ξ + CH∇V ξ, (4.25)

V∇ξφV +AξωV = BAξV + φV∇ξV, (4.26)

AξφV +H∇ξωV = CAξV + ωV∇ξV, (4.27)

where V,W ∈ Γ(kerπ∗), and ξ, η ∈ Γ(kerπ⊥∗ ).
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Proof. For any V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ), using (3.12), we have

F∇ξV = ∇ξFV.

Hence, using (2.7), (2.8), (4.15) and (4.16), we obtain

BAξV + CAξV + φV∇ξV + ωV∇ξV = AξφV + V∇ξφV +AξωV +H∇ξωV.

Taking the vertical and horizontal parts of this equation, we get (4.26) and (4.27). The other

assertions can be obtained by using (2.5)∼(2.8), (4.15) and (4.16).

Proposition 4.1. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN). Then, we obtain

φ2X = cos2θX, (4.28)

for X ∈ Γ(Dθ), where θ denotes the slant function.

Proof. For any non-zero X ∈ Γ(Dθ) we can write following equations:

cosθ =
g(FX, φX)

|FX||φX|
=
g(X,φ2X)

|X||φX|
and cosθ =

|φX|
|FX|

.

Then, we obtain

cos2θ =
g(X,φ2X)

|X||φX|
|φX|
|FX|

.

Therefore, we get the equality

g(cos2θX,X) = g(X,φ2X),

which gives the assertion.

Remark 4.2. We easily observe that the converse of the Proposition 4.1 also holds.

Now we give a theorem for pointwise semi-slant submersions, which has similar idea with

the Theorem 4.2. in [25].

Theorem 4.1. Let π be a pointwise semi-slant Riemannian submersion from a l.p.R. man-

ifold (M, g, F ) onto a Riemannian manifold (N, gN). Then, π is a pointwise semi-slant

submersion if and only if there exists a constant λ ∈ [0, 1] such that

(a)D′ = {x ∈ D′ |φ2X = λX},
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(b)For anyX ∈ Γ(TM), orthogonal to D′ , ωX = 0.

Moreover, in this case λ = cos2θ, where θ denotes the slant function.

Proof. Let π : (M, g, F )→ (N, gN) be a pointwise semi-slant submersion. Then,

λ = cos2θ and D′ = Dθ. By the definition of the pointwise semi-slant submersion,

ωX = 0, where X belongs to orthogonal complement of D′ .

Conversely, (a) and (b) imply that TM = D ⊕ D′ . Since φD′ ⊆ D′ , from (b), D is an

invariant distribution. Thus, π is a pointwise semi-slant submersion.

Now, we investigate the integrability conditions for invariant and slant distributions.

Theorem 4.2. Let π be a pointwise semi-slant Riemannian submersion from an almost

product Riemannian manifold (M, g, F ) onto a Riemannian manifold (N, gN). Then, the

invariant distribution D is integrable if and only if

φ(∇̂VW − ∇̂WV ) ∈ D, (4.29)

for V,W ∈ Γ(D).

Proof. For V,W ∈ Γ(D) and X ∈ Γ(Dθ), we know [V,W ] ∈ D if and only if

F [V,W ] ∈ D. So by (4.15) we obtain,

g(F [V,W ], X) =g(F (∇VW −∇WV ), X)

=g(F (TVW + ∇̂VW − TWV − ∇̂WV ), X)

=g(φ(∇̂VW − ∇̂WV ), X).

Thus, [V,W ] ∈ D if and only if φ(∇̂VW − ∇̂WV ) ∈ D.

In a similar way, we get the following theorem.

Theorem 4.3. Let π be a pointwise semi-slant Riemannian submersion from an almost

product Riemannian manifold (M, g, F ) onto a Riemannian manifold (N, gN). Then, the

slant distribution Dθ is integrable if and only if

φ(∇̂XY − ∇̂YX) ∈ Dθ,

for X,Y ∈ Γ(Dθ).

If we consider the total manifold l.p.R. instead of almost product Riemannian, we obtain

the following results.
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Lemma 4.5. Let π be a proper pointwise semi-slant submersion from a l.p.R. manifold

(M, g, F ) onto a Riemannian manifold (N, gN). Then, we have the followings

i) g(∇VW,X) = csc2 θ{g(TVW,ωφX) + g(TV φW,ωX)} (4.30)

ii) g(∇XY, V ) = csc2 θ{g(TXωφY, V ) + g(TXωY, φV )} (4.31)

where θ is the slant function, V,W ∈ Γ(D) and X,Y ∈ Γ(Dθ).

Proof. Let V,W ∈ Γ(D) and X,Y ∈ Γ(Dθ). Then, by using (3.11) and (4.15), we

obtain

g(∇VW,X) =g(∇V FW,FX)

=g(∇V FW,φX) + g(∇V FW,ωX)

=g(∇VW,φ2X) + g(∇VW,ωφX) + g(∇V φW,ωX).

If we regard (4.28),(2.5) and (2.6) for the last expression, we get the following equality

(1− cos2 θ)g(∇VW,X) = g(TVW,ωφX) + g(TV φX,ωX).

So, that is what we needed.

For the second equation we apply the same idea. Let X,Y ∈ Γ(Dθ) and V ∈ Γ(D). Then by

using (3.11) and (4.15), we get

g(∇XY, V ) =g(∇XFY, FV )

=g(∇XφY, FV ) + g(∇XωY, FV )

=g(∇Xφ2Y, V ) + g(∇XωφY, V ) + g(∇XωY, FV ).

If we consider (4.28),(2.5) and (2.6) with the last equation, we get the following

g(∇XY, V ) =g(∇X(cos2 θ)Y, V ) + g(∇XωφY, V ) + g(∇XωY, FV )

=g(−(sin 2θ)(Xθ)Y, V ) + g(cos2 θ∇XY, V ) + g(TXωφY, V )

+g(TXωY, φV ).

Therefore, since g(−(sin 2θ)(Xθ)Y, V ) = 0, we get the assertion.

Theorem 4.4. Let π be a proper pointwise semi-slant submersion from a l.p.R. manifold

(M, g, F ) onto a Riemannian manifold (N, gN). Then, the invariant distribution D is inte-

grable if and only if

g(TV φW − TWφV, ωX) = 0,
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for V,W ∈ Γ(D) and X ∈ Γ(Dθ).

Proof. Let V,W ∈ Γ(D) and X ∈ Γ(Dθ). Then, by Lemma 4.5 and (2.3), we have

g([V,W ], X) =g(∇VW,X)− g(∇WV,X)

= csc2 θ{g(TVW,ωφX) + g(TV φW,ωX)

−g(TWV, ωφX) + g(TWφV, ωX)}

= csc2 θ{g(TV φW,ωX)− g(TWφV, ωX)}.

Therefore, D is integrable if and only if g(TV φW − TWφV, ωX) = 0.

In the same way, we examine the slant distribution.

Theorem 4.5. Let π be a proper pointwise semi-slant submersion from a l.p.R. manifold

(M, g, F ) onto a Riemannian manifold (N, gN). Then, the slant distribution Dθ is integrable

if and only if

g(TXωφY − TY ωφX, V ) = g(TY ωX − TXωY, φV )

for X,Y ∈ Γ(Dθ) and V ∈ ΓDθ.

Proof. Let X,Y ∈ Γ(Dθ) and V ∈ Γ(D). By using Lemma 4.5, we obtain

g([X,Y ], V ) = csc2 θ{g(TXωφY, V ) + g(TXωY, φV )

−g(TY ωφX, V ) + g(TY ωX, φV )}.

Thus, slant distribution Dθ is integrable if and only if

g(TXωφY − TY ωφX, V ) = g(TY ωX − TXωY, φV ).

Now, we focus on that in which conditions the distributions, which we study on, define

totally geodesic foliation.

Proposition 4.2. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN). Then, kerπ∗ defines a totally geodesic foliation if and

only if

C(TV φW +H∇V ωW ) + ω(∇̂V φW + TV ωW ) = 0, (4.32)

for V,W ∈ Γ(kerπ∗).
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Proof. For V,W ∈ Γ(kerπ∗), by using (2.5), (2.6) and (4.15), we get

∇VW =F∇V FW = F (∇V φW +∇V ωW )

=F (TV φW + ∇̂V φW + TV ωW +H∇V ωW )

=BTV φW + CTV φW + φ∇̂V φW + ω∇̂V φW

+ φTV ωW + ωTV ωW + BH∇V ωW + CH∇V ωW.

Therefore, kerπ∗ defines a totally geodesic foliation if and only if

C(TV φW +H∇V ωW ) + ω(∇̂V φW + TV ωW ) = 0.

Proposition 4.3. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN). Then, kerπ⊥∗ defines a totally geodesic foliation if and

only if

B(AξBη +H∇ξCη) + φ(V∇ξBη +AξCη) = 0, (4.33)

for ξ, η ∈ Γ(kerπ⊥∗ ).

Proof. This proof can likewise be done using the techniques of the proof of Proposition

4.2 .

In the view of Proposition 4.2 and Proposition 4.3, we obtain the following result.

Corollary 4.1. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN). Then, M is a locally product Mkerπ∗ × Mkerπ⊥∗
if

and only if (4.32) and (4.33) hold, where Mkerπ∗ and Mkerπ⊥∗
are integral manifolds of the

distributions kerπ∗ and kerπ⊥∗ , respectively.

Proposition 4.4. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN). Then, the invariant distribution D defines a totally

geodesic foliation on kerπ∗ if and only if for U, V ∈ Γ(D),

Q(BTUφV + φ∇̂UφV ) = 0 and (CTUφV + ω∇̂UφV ) = 0. (4.34)

Proof. For U, V ∈ Γ(D), from (2.5), (2.6), (4.15) and (4.16) we obtain

∇UV =F∇UFV = F (∇UφV +∇UωW )

=F (∇UφV ) = F (TUφV + ∇̂UωV )

=BTUφV + CTUφV + φ∇̂UωV + ω∇̂UωV.
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Therefore, we obtain the assertion.

Proposition 4.5. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN). Then, the slant distribution Dθ defines a totally geo-

desic foliation on kerπ∗ if and only if for

X,Y ∈ Γ(Dθ),

P (B(TXφY +H∇XωY )+φ(TXωY + ∇̂XφY )) = 0 (4.35)

and

ω(∇̂XφY + TXωY ) + C(TXφY +H∇XωY ) = 0. (4.36)

Proof. The argument is same with the proof of Proposition 4.4.

By Proposition 4.4 and Proposition 4.5 we have the following result.

Corollary 4.2. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN). Then, the vertical distribution kerπ∗ is a locally prod-

uct MD × MDθ if and only if (4.34) and (4.35) hold, where MD and MDθ are intergral

manifolds of D and Dθ, respectively.

Theorem 4.6. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN). Then, π is a totally geodesic map if and only if

ω(∇̂V φW + TUωW )+C(TV φW +H∇V ωW ) = 0 (4.37)

and

ω(∇̂V Bξ + TV Cξ)+C(TV Bξ +H∇V Cξ) = 0 (4.38)

for V,W ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ).

Proof. Since π is a Riemannian submersion, we have

(∇π∗)(ξ, η) = 0, for ξ, η ∈ Γ(kerπ⊥∗ ).
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For V,W ∈ Γ(kerπ∗), we obtain

(∇π∗)(V,W ) = ∇πV (π∗W )− π∗∇VW

=− π∗(F∇V FW ) = −π∗(F (∇V φW +∇V ωW )

=− π∗(F (TV φW + ∇̂V φW + TV ωW +H∇V ωW )

=− π∗(BTV φW + CTV φW + φ∇̂V φW + ω∇̂V φW

+φTV ωW + ωTV ωW + BH∇V ωW + CH∇V ωW )

=− π∗(CTV φW + ω∇̂V φW + ωTV ωW + CH∇V ωW ).

Thus,

(∇π∗)(V,W ) = 0 ⇔ ω(∇̂V φW + TV ωW ) + C(TV φW + H∇V ωW ) = 0. By a similar way

above, for V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ), we get

(∇π∗)(V, ξ) = 0⇔ ω(∇̂V Bξ + TV Cξ) + C(TV Bξ +H∇V Cξ) = 0.

Recall that the fibers of a Riemannian submersion π : (M, g) → (N, gN ) is called totally

umbilical if

TUV = g(U, V )H (4.39)

for any U, V ∈ Γ(kerπ∗), where H is the mean curvature vector field of the fiber.

Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F ) onto a Riemann-

ian manifold (N, gN) . We can define

(∇Uφ)V = ∇̂UφV − φ∇̂UV, (4.40)

(∇Uω)V = H∇UωV − ω∇̂UV, (4.41)

(∇UB)ξ = ∇̂UBξ − BH∇Uξ, (4.42)

(∇UC)ξ = H∇UCξ − CH∇Uξ, (4.43)

where U, V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ).

We say that φ (resp. ω, B or C) is parallel if ∇φ = 0 (resp. ∇ω = 0, ∇B = 0 or ∇C = 0).
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Lemma 4.6. Let π be a pointwise semi-slant submersion with parallel canonical structures

from a l.p.R. manifold (M, g, F ) onto a Riemannian manifold (N, gN) . Then for any U, V ∈

Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ), we have

(∇Uφ)V = BTUV − TUωV, (4.44)

(∇Uω)V = CTUV − TUφV, (4.45)

(∇UB)ξ = φTUξ − TUCξ, (4.46)

(∇UC)ξ = ωTUξ − TUBξ. (4.47)

Proof. All of the equations follow from Lemma 4.4 and (4.40)∼(4.43).

Theorem 4.7. Let π be a proper pointwise semi-slant submersion with totally umbilical fibers

from a l.p.R. manifold (M, g, F ) onto a Riemannian manifold (N, gN) . If dim(Dθ) ≥ 2 and

φ is parallel, then the fibers of π are totally geodesic or the mean curvature vector field H

belongs to µ.

Proof. If the fibers of π are totally geodesic, it is obvious. Let us assume the other

case. Since dim(Dθ) ≥ 2, then we can choose X,Y ∈ Γ(Dθ) such that the set {X, Y } is

orthonormal. By using (3.11), (3.12), (4.15), (4.16), (2.5) and (2.6), we have

∇XFY =F∇XY

∇XφY +∇XωY =F (TXY + ∇̂XY )

TXφY + ∇̂XφY + TXωY +H∇XωY =BTXY + CTXY + φ∇̂XY + ω∇̂XY.

Therefore, we obtain

g(∇̂XφY + TXωY,X) =g(BTXY + φ∇̂XY,X)

g(φ∇̂XY − ∇̂XφY,X) =g(TXωY − BTXY,X)

g((∇Xφ)Y,X) =g(FTXY − TXFY,X).

Since φ is parallel, we get

g(FTXY,X) = g(TXFY,X). (4.48)
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Thus, using (4.39) and (4.48), we have

g(H,FY ) =g(TXX,FY ) = −g(TXFY,X) = −g(FTXY,X)

=− g(TXY, FX) = −g(X,Y )g(H,FX) = 0,

since g(X,Y ) = 0. So, we deduce that H ⊥ ωDθ. Therefore, it follows H ∈ µ from (4.18).

Corollary 4.3. Let π be a proper pointwise semi-slant submersion with totally umbilical fibers

from a l.p.R. manifold (M, g, F ) onto a Riemannian manifold (N, gN) . If (kerπ∗)
⊥ = ωDθ,

i.e. µ = {0} and φ is parallel, then the fibers of π are totally geodesic.

Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F ) onto a Rie-

mannian manifold (N, gN) . Then, we say that the fibers of π are mixed geodesic, if TXW = 0,

for all X ∈ Γ(Dθ), W ∈ Γ(D), [26].

Theorem 4.8. Let π be a proper pointwise semi-slant submersion from a l.p.R. manifold

(M, g, F ) onto a Riemannian manifold (N, gN). If ω is parallel, i.e. ∇ω = 0, then the fibers

of π are mixed geodesic.

Proof. Let ω be parallel, then for any U, V ∈ Γ(kerπ∗) from (4.45), we have

CTUV = TUφV. (4.49)

Using (4.49), we obtain

C2TUV = TUφ2V. (4.50)

If we put U = W ∈ Γ(D) and V = X ∈ Γ(Dθ) in (4.50) and using (4.28), we get

C2TWX = cos2θTWX. (4.51)

On the other hand, using the symmetry property of T on Γ(kerπ∗) and (4.49), we have

C2TWX = C2TXW = TXφ2W = TXW, (4.52)

that is

C2TWX = TXW. (4.53)

Since submersion π is proper, from (4.51) and (4.53), it follows that

TXW = 0. (4.54)
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Remark 4.3. Most of our results for pointwise semi-slant submersion is similar to semi-slant

case, see [12].

5. The first variational form of a pointwise semi-slant submersion

In this section, we give a different approach to check whether a submersion is harmonic

and define the first variational form of a semi-slant submersion.

Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F ) onto a Rie-

mannian manifold (N, gN). Then, we can define the 1-form dual to the vector field Fξ, for

ξ ∈ Γ(kerπ⊥∗ ), such that

σξ : Γ(kerπ∗) 7→ F(π−1
q ), q ∈ N

V 7→ σξ(V ) = g(Fξ, V ),

for all V ∈ Γ(kerπ∗). In the view of [31] and [7], we define the followings.

The Legendre variations of any fiber of π, denoted by the set L, where

L = {ξ ∈ Γ(kerπ⊥∗ ) : dσξ = 0, i.e. σξ is closed},

the Hamiltonian variations of any fiber of π, denoted by the set E,

E = {ξ ∈ Γ(kerπ∗)
⊥ : ∃f ∈ F(π−1

q )⇒ σξ = df, i.e. σξ is exact}

and the harmonic variations of any fiber of π are given by the set

H = {ξ ∈ Γ(kerπ∗)
⊥ : ∆σξ = 0; i.e. σξ is harmonic}.

By the definitions of differential and co-differential operators, we observe that

E ⊂ L , H ⊂ L and E ∩H = 0. (5.55)

Now, we examine that in which conditions the 1-form σξ defined above is a Legendre variation.

Lemma 5.1. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN). The 1-form σξ is a Legendre variation if and only if

g(TUξ, φV )− g(TV ξ, φU) = g(AξU, ωV )− g(AξV, ωU), (5.56)

for all U, V ∈ Γ(kerπ∗).
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Proof. Let U, V be in kerπ∗. Then, by the definition of differential, (2.6) and (3.11),

we obtain

(dσξ)(U, V ) =Ug(Fξ, V )− V g(Fξ, U)− g(Fξ, [U, V ])

=Ug(ξ, FV )− V g(ξ, FU)− g(ξ, F [U, V ])

=g(∇Uξ, FV ) + g(ξ,∇UFV )

−g(∇V ξ, FU)− g(ξ,∇V FU)

−g(ξ, F∇UV ) + g(ξ, F∇V U)

=g(∇Uξ, φV + ωV )− g(∇V ξ, φU + ωU)

=g(∇Uξ, φV ) + g(∇Uξ, ωV )

−g(∇V ξ, φU) + g(∇V ξ, ωU)

=g(TUξ, φV ) + g(H∇Uξ, ωV )

−g(TV ξ, φU) + g(H∇V ξ, ωU).

Since we may assume ξ is basic, we have

(dσξ)(U, V ) =g(TUξ, φV ) + g(AξU, ωV )

−g(TV ξ, φU) + g(AξV, ωU).

Thus, the assertion follows.

Lemma 5.2. For ξ ∈ Γ(µ), σξ ≡ 0.

Proof. Let ξ ∈ Γ(µ). Then, Fξ ∈ Γ(µ). For any V ∈ Γ(kerπ∗), we get

σξ(V ) = g(Fξ, V ) = 0.

So, σξ ≡ 0, for all V ∈ Γ(kerπ∗).

Remark 5.1. Because of Lemma 5.2, throughout this paper, we can assume that H belongs

to Γ(ωDθ).

Proposition 5.1. Let π be a pointwise semi-slant submersion from a l.p.R. manifold (M, g, F )

onto a Riemannian manifold (N, gN) and f be a smooth function on a fiber. Then, F (grad(f)|ωDθ) ∈

E.
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Proof. Let f be a smooth function on a fiber. For ξ = F (grad(f)|ωDθ), and any

V ∈ Γ(kerπ∗), we obtain

σξ(V ) =g(Fξ, V ) = g(grad(f), V ) = V [f ] = df(V ).

Thus, we get σξ = df , i.e. ξ ∈ E.

Let π be a pointwise semi-slant submersion with compact fibers from a l.p.R. manifold

(M, g, F ) onto a Riemannian manifold (N, gN) and ξ ∈ Γ(kerπ⊥∗ ). The first variation of the

volume form of a fiber π−1
q , for q ∈ N , is defined as follows [17]

V
′
(ξ) = −k

∫
π−1
q

g(ξ,H)∗1. (5.57)

where k = dim(π−1
q ). We call the fibers;

• If V
′
(ξ) = 0, for all ξ ∈ L, then π−1

q is L−minimal,

• If V
′
(ξ) = 0, for all ξ ∈ E, then π−1

q is E−minimal,

• If V
′
(ξ) = 0, for all ξ ∈ H, then π−1

q is H−minimal.

Remark 5.2. One can easily see that if the fiber is minimal, then the fiber is L,E and

H −minimal. On the other hand, because of the facts that E ⊂ L and H ⊂ L, the fiber is

E−minimal and H−minimal if it is L−minimal.

Theorem 5.1. Let π be a pointwise semi-slant submersion with compact fibers from a l.p.R.

manifold (M, g, F ) onto a Riemannian manifold (N, gN). Then,

(a) The fiber π−1
q is L−minimal if and only if σH is co-exact.

(b) The fiber π−1
q is E−minimal if and only if σH is co-closed.

(c) The fiber π−1
q is H −minimal if and only if σH is the sum of an exact and a co-exact

1-form.

Proof.

(a) ⇒ : Let the fiber π−1
q is L−minimal, then for any ξ ∈ L, we have g(H, ξ) = 0 from

(5.57). By the definition of the Hodge star operator [10], we have

σξ ∧ σH(V1, V2, ..., Vk) = g(ξ,H)∗1(V1, V2, ..., Vk),
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for V1, V2, ..., Vk ∈ Γ(kerπ∗). From the definition of the global scalar product (.|.) (see [10])

on the module of all forms on the fiber, we get

(σξ|σH) =

∫
π−1
q

σξ ∧ ∗σH = 0. (5.58)

Denote by δ the codifferential operator [10] on the fiber π−1
q . Since σξ is closed, for any

2-form β on π−1
q , we have

0 = (dσξ|β) = (σξ|δβ). (5.59)

Since π−1
q is compact, by (5.58) and (5.59) we conclude that σH is co-exact.

⇐ : Suppose that σH is co-exact, we have σH = δψ for some 2-form ψ. Then, for any ξ ∈ L,

(σξ|σH) = (σξ|δψ) = (dσξ|ψ) = 0

and then

V
′
(ξ) = −k

∫
π−1
q

g(H, ξ)∗1 = −k
∫
π−1(q)

(σξ ∧ ∗σH) = −k(σξ|σH) = 0,

i.e. π−1
q is L−minimal.

(b) ⇒ : Let the fiber π−1
q be E−minimal. Then, we have

0 = V
′
(ξ) = −k

∫
π−1
q

g(ξ,H)∗1 = −k
∫
π−1
q

(σξ ∧ ∗σH) = −k(σξ|σH),

that is, (σξ|σH) = 0. Since ξ ∈ E, σξ = df for some function f on the fiber π−1
q . Thus,

(df |σH) = (f |δσH) = 0.

Hence it follows that δσH = 0, i.e. σH is co-closed.

⇐ : Suppose that σH is co-closed. Let ξ ∈ E, then there exists a function f ∈ F(π−1
q ) such

that σξ = df . Hence, we have

(σξ|σH) = (df |σH) = (f |δσH) = 0.

Therefore,

V
′
(ξ) = −k

∫
π−1
q

g(H, ξ)∗1 = −k
∫
π−1
q

(σξ ∧ ∗σH) = −k(σξ|σH) = 0,

that is V
′
(ξ) = 0 for ξ ∈ E, i.e. π−1

q is E−minimal.

(c) ⇒ : If the fiber π−1
q is H−minimal, then for ξ ∈ H, we have

0 = V
′
(ξ) = −k

∫
π−1
q

g(ξ,H)∗1 = −k
∫
π−1
q

(σξ ∧ ∗σH) = −k(σξ|σH).
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It means that, σH is orthogonal to harmonic 1-forms on the fiber π−1
q . Thus, by the Hodge

decomposition theorem [10], we conclude that σH is the sum of an exact and a co-exact

1-form.

⇐ : Let σH be the sum of an exact 1-form ω1 = df and a co-exact 1-form ω2 = δψ. For

ξ ∈ H, we have

(σξ|σH) =(σξ|df + δψ) = (σξ|df) + (σξ|δψ)

=(δσξ|f) + (dσξ|ψ) = 0,

since dσξ = δσξ = 0. Thus,

V
′
(ξ) = −k

∫
π−1
q

g(ξ,H)∗1 = −k
∫
π−1
q

(σξ ∧ ∗σH) = −k(σξ|σH),

that is, the fiber is H−minimal.

Theorem 5.2. Let π be a pointwise semi-slant submersion with compact fibers from a l.p.R.

manifold (M, g, F ) onto a Riemannian manifold (N, gN). If H ∈ L, then

(a) π−1
q is L−minimal if and only if π−1

q is minimal.

(b) π−1
q is E−minimal if and only if σH is a harmonic variation.

(c) π−1
q is H−minimal if and only if σH is an exact 1-form.

Proof. (a) If the fiber π−1
q is L−minimal, then by Theorem 5.1-(a) we have, σH is

co-exact. Hence σH is co-closed. Taking into account the fact that dσH = 0, we deduce that

σH is harmonic. But this is a contradiction because of Hodge decomposition theorem [10].

So, σH must be zero. Hence we conclude that H = 0. The converse is clear.

(b)⇒ : If the fiber π−1
q is E−minimal, then we have δσH = 0 from Theorem 5.1-(b). Since

dσH = 0, σH is also harmonic, i.e. ∆σH = 0.

⇐ : If σH is harmonic, then σH is co-closed. By Theorem 5.1-(b), the fiber π−1
q is E −

minimal.

(c)⇒ : Assume that π−1
q is H−minimal. Then, from Theorem 5.1-(c), σH is the sum of an

exact 1-form and a co-exact 1-form. On the other hand, the condition H ∈ L implies that

σH is orthogonal to every co-exact 1-form on π−1
q . Thus, σH must be exact.
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⇐ : Let σH be an exact 1-form. For ξ ∈ H, we obtain

V
′
(ξ) =− k

∫
π−1
q

g(ξ,H)∗1 = −k
∫
π−1
q

(σξ ∧ ∗σH)

=− k(σξ|σH) = (σξ|df) = (δσξ|f) = 0,

that is, π−1
q is H−minimal.

Remark 5.3. It is well known that, the fibers of a submerion is minimal if and only if

the submersion is harmonic. Now, we give a new approach for harmonicity of a pointwise

semi-slant submersion. By Theorem 5.2-(a), we obtain the following result.

Corollary 5.1. Let π be a pointwise semi-slant submersion with compact fibers from a l.p.R.

manifold (M, g, F ) onto a Riemannian manifold (N, gN). If H ∈ L, then π is harmonic if

and only if π−1
q is L−minimal.

Lemma 5.3. Let π be a pointwise semi-slant submersion with compact fibers from a l.p.R.

manifold (M, g, F ) onto a Riemannian manifold (N, gN). Then,

δσH = 0⇔ Σig(TφEiEi, H) = Σig(AωEiEi, H), (5.60)

where {E1, E2, ..., Em} is a local basis of Dθ.

Proof.

δσH = 0⇔ Σig(∇EiFH,Ei) = 0.

Using (3.12),

⇒ δσH = 0⇔Σig(∇EiH,FEi)⇔ Σig(∇EiH,φEi + ωEi)

=Σig(∇EiH,φEi) + Σig(∇EiH,ωEi)

=Σig(TEiH,φEi) + Σig(AHEi, ωEi).

Thus, the assertion follows from the skew-symmetry and symmetry properties of the O’Neill

tensors A and T .
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