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HARMONICITY OF MUS-GRADIENT METRIC

NOUR EL HOUDA DJAA'™ * AND ABDERRAHIM ZAGANE

ABSTRACT. Let (M™,g) be an m-dimensional Riemannian manifold. In this paper, we in-
troduce an other class of metric on (M™, g) called Mus-gradient metric. First we investigate
the Levi-Civita connection of this metric. Secondly we study some properties of harmonicity
with respect to the Mus-gradient metric. In the last section, we investigate the harmonicity
of Mus-gradient metric on product manifolds. Also, we construct some examples of har-
monic maps.
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1. INTRODUCTION

The theory of harmonic maps studies the mapping between different metric manifolds
from the energy-minimization point of view (solutions to a natural geometrical variational
problem). This concept has several applications such as geodesics, minimal surfaces and
harmonic functions. Harmonic maps are also closely related to holomorphic maps in several
complex variables, to the theory of stochastic processes, to nonlinear field theory in theoretical
physics, and to the theory of liquid crystals in materials science. The last years this subject
has been developed extensively by several authors (for example see [1], [3], [4], [B], [7], [8],
[12], [10], [11], [12] etc...).

The main idea in this note consists in the modification of the metric of the Riemannian
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62 N. E. H. DJAA AND A. ZAGANE

manifold (M™,g). Firstly we introduce the Mus-gradient metric on M noted by ¢ and
we investigate the Levi-Civita connection of this metric (Theorem . Secondly we study
the harmonicity with respect to the Mus-gradient metric, then we establish necessary and
sufficient conditions under which the Identity Map is harmonic with respect to this metric
(Theorem and Theorem [3.4). Next we study the harmonicity of the map o : (M, g§) —
(N, h) (Theorem and the map o : (M, g) — (N, h) (Theorem [3.8)). In the last section,
we investigate the harmonicity of Mus-gradient metric on product manifolds (Theorem

to Theorem [4.7)). We also construct some examples of harmonic maps.

2. MUS-GRADIENT METRIC

Definition 2.1. Let (M™,g) be a Riemannian manifold and f : M —]0,+oo[ be a strictly

positive smooth function. We define the Mus-gradient metric on M noted § by
9X,Y)e = [f(@)9(X,Y)e + Xa(f)Ya(), (2.1)

where x € M and X,Y € S{(M), f is called twisting function.

In the following, we consider ||grad f|| = 1, where ||.|| denote the norm with respect to

(M™, g).

Lemma 2.1. Let grad f (resp. gfr\aJd f) denote the gradient of f with respect to g ( resp. g),

then we have

gfr\a/df = grad f. (2.2)

1
f+1
Proof. We have

X(f) = (Xgmdf)

= ( (X, grad ) — X (f)(grad f)(f))

7
£ (G, grad )= X(1)
on the other hand, we have X (f) = §(X,Mf), then

§(X,gradf) = }( (X, grad f) — §(X, grad f))

= U gredf)

so, thus ;"\c_l?lf = grad f.

Frl
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We shall calculate the Levi-Civita connection V of (M™, §), as follows.

Theorem 2.1. Let (M™, g) be a Riemannian manifold, the Levi-Civita connection v of

(M™,q), is given by

VyY = VXY+);(;)Y+Y2(J{)X
Hess;(X,Y)  X(f)Y(f) g(X,Y)
S e ey Ty TR (23)

for all vector fields X,Y € I§(M), where V denote the Levi-Civita connection of (M™,g)
and Hess§(X,Y) = g(Vxgrad f,Y) is the Hessian of f with respect to g.

Proof. From Kozul formula and Lemma we have

2§(VxY,Z) = Xg(¥,2)+Y§(Z,X) - Z§(X,Y) +§(Z,[X,Y))

+3(Y,[2,X]) - §(X, [Y, Z])

= X(f9(V.Z)+Y (N Z() +Y (f9(Z, X)+ Z())X(f))
—Z(f9(X,Y)+ X(NY () + f9(Z,[X,Y]) + Z(£)[X, Y](f)
+f9(Y,[2, X)) + Y (N2, X](f) - fo(X,[Y. Z])
~X(NIY, Z)(f)

= X(N9Y,2)+ fXg(Y.Z) + X(Y () Z(f) + Y ())X(Z(f))
+Y (£)9(Z,X) + [Y9(Z. X) + Y (Z(/))X(f) + Z())Y (X(]))
~Z(Ng(X,Y) = fZ9(X,Y) = Z(X ()Y (f) = X(N)Z(Y (f))
+f9(Z, (X, Y)) + Z())(X(Y () = Y(X() + f9(Y,[Z, X])
+Y () (Z(X(f) = X(Z(f))) - f9(X, [V, Z])
~X(N(Y(Z(F) = 2(Y(£)))

= 2fg(VxY.2) + X(N)g(Y, 2) + Y (})9(Z, X) = Z(£)g(X,Y)
+2X (Y ()Z(f)

= 2§(VxY,Z) = 2(VxY)(H)Z(f) + 2X (Y () Z(f)

X(f) Y(f)

+T(§(Y, Z) =Y (NHZ(f)) + T(Q(ZX) - Z(NHX(f))

—Z(f)g(X,Y).
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From the definition of Hessian, we obtain

25(VxY.Z) = 2§(VxY,Z)+ X;f)g(x Z) + Y;f)fxz, X)
| (2Hess(X,Y) — 22 (f;”f ) g v))2(p)
— 25(VxY + X;J{)Y + Y;J{C)X, Z)
+2(Hessf(X,Y) — W - %g(x,y))g(ﬁif, ).
From the formula (2.2), we get
VxY = VxY+ );(;)YJF Y2(J{)X
+(H655f(X7Y) _ XYW 9 Y)y

f+1 fF+1 200+
Lemma 2.2. Let (M™,g) be a Riemannian manifold, then for all vector field X € S§{(M),

we have

6Xgmdf = Vxgrad f + 21fX — Zfi(f(i)l)gmdf' (2.4)

Proof. Using the theorem |2.1] we have

Vxgradf = Vxgradf+ Xz(fﬂgmdf + WX
Hessp(X,grad f)  X(f)(grad f)(f) g(X,gradf)
+ f+1 P 2+ Jgrad J.

Since ||grad f|| = 1, we obtain (grad f)(f) =1 and Hess¢(X, grad f) = 0. then we get

6Xgradf = Vxgradf + 21fX — m

3. HARMONICITY OF MUS-GRADIENT METRIC

grad f.

Consider a smooth map ¢ : (M™,g) — (N", h) between two Riemannian manifolds, then

the second fundamental form of ¢ is defined by
(Vdg)(X.Y) = Vidd(Y) — dp(VxY). (3:5)

Here V is the Riemannian connection on M and V? is the pull-back connection on the

pull-back bundle ¢~'T'N. The tension field of ¢ is defined by

T(¢) = trace,Vdg = (V. do(E;) — do(V g, Ey)), (3.6)
=1

where {E;} is an orthonormal frame on (M™, g). A map ¢ is called harmonic if and

i=1,m

only if 7(¢) = 0.



INT. J. MAPS MATH. (2022) 5(1):61-77 / HARMONICITY OF MUS-GRADIENT METRIC 65

Remark 3.1. Let (M™, g) be a Riemannian manifold and g the Mus-gradient metric on M.
If{Ei},_17; be an orthonormal frame on (M™, g), such that Ey = grad f, the set {E;}

i=1,m’

which is defined as below, is an orthonomal frame on (M™,g), then

~ 1 ~ 1
E1 = Elin = 7E7;, 1= 2,m, (37)
Vitl v

where f: M —]0,+00] be a strictly positive smooth function.

Theorem 3.1. The tension field of the Identity Map I : (M™,g) — (M™,g) is given by

1 (m—-2)f+m-—1
I = - A df, 3.8
"0 = g (f))grad f (3.8)
where A(f) = trace,Hessy =" | g(VEg,grad f, E;).
Proof. Let {Ez}z:m be a locale orthonormal frame on (M™, ) defined by 1’
then

() = i(v%idf(ﬁi)—df(%ﬁi))

=1
= > (Vg Ei - Vg E)
=1
- _Ei(f) = Hessf(Ei,Ei)_ Ei(f)* _Q(EiaEi)
= (- R T ey g )

(—1 _A(f)+ L +m—1)
MY Y fUHD? 2(f+ 1) 2f(f+ 1)

= 1 (m=2)f+m-1 .
- f(f+1)( 2(f + 1) A(f))grad f.

From the Theorem [B.1] we obtain

grad f

Theorem 3.2. The Identity Map I : (M™,g) — (M™,g) is harmonic if and only if f =
const or

(m=2)f+m-—1

Af) = 20 +1)

(3.9)

Example 3.1. Let M =0, +-o00[x pR™! be the Riemannian twisted product manifold equipped

with the Riemannian metric g defined by
g = daf + F(z1)ggm-1
were ggm—1 1S the standard metric and

1

F(r) = e%xl(m +1)m-T1.
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Let f(x1, - ,xm) = x1, it’s clear that ||gradf| =1

as we have
(m=2)f+m—1
A=

So, thus the Identity Map I : (M™,g) — (M™,g) is harmonic.

Example 3.2. Let m = 2 and f(z,y) = Fi(y — Iz) + Fo(y + Iz) + 2% + y?, where
Fi,F: C— R and I?> = —1. Then the Identity Map I : (M™,§) — (M™,g) is harmonic.

Theorem 3.3. The tension field of the Identity Map I : (M™, g) — (M™,g) is given by

1 2—m
I) = ——(A —_ df. 3.10
") = A0+ 2 gradg (3.10)
Proof. Let {E;},_15, be a locale orthonormal frame on M, then

(VE,dI(E;) — dI(Vg,E;))

2
=
Il
.MS

s
Il
—

Varend(E;) — Vi, E;

I

@
I
—

<
3
&

I
)=
<
.
t

s
Il
—

i1 TV byt

_ N~ (E) ., Hessp(EinE)  Ei(f)? g(Ei By

a 2( f Bit f+1 ) 2(f+1))~"mdf>
1 A(f) 1 m

= ored S (E 5 Ty odd

= !}0_1'_1(2_2m+A(f))gradf.

From the Theorem [B.3] we obtain

Theorem 3.4. The Identity Map I : (M™,g) — (M™, g) is harmonic if and only if

(
A(f) = mT” (3.11)

Example 3.3. The Identity Map I : (IR?, g = dx?) — (IR?,§) is harmonic if and only if

O f 0% f
A = —=5+ -5 =0 3.12
D=y oy 12
-7 37 . ) . . .
Example 3.4. Let M :]0’+OO[X]T’ Z[ be endowed with the Riemannian metric g in

polar coordinate defined by

g = dr® + r?d6?.
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The non-null Christoffel symbols of the Riemannian connection are:
1
1112 = 1121 = *7 Loy = —r.

Relatively to the orthonormal frame

. 19
Do T v o0
we have
0 -10
V61€1 = Velez =0 s Vezel = 7%, V62€2 75
Let f(r,0) = rsin(6 + ) for all (r,0) € M.
By direct computations we obtain
. T, 0 1 T, 0
grad f = sin(0+ Z)E + ;COS(G + Z)%,
lgrad f|| = 1,
A(f) = o.

By virtue of the Theorem the identity map I : (M™,g) — (M™, g) is harmonic, where
g = (rsin(6 + %) + sin?(0 + ))dr +7r (7‘ sin(f + %) + cos?(0 + — ))d92 + 7 cos(20)drdo.

Theorem 3.5. The tension field of the map o : (M™,q) — (N", h) is given by

~ B 170 1 (m—2)f+m—1
o) = 7O g
1

,mvgg(gmdﬁda(gradf), (3.13)

— A(f))do(grad f)

where f: M —]0,400] be a strictly positive smooth function and 7(o) is the tension field of

o:(M,g9) — (N, h).

Proof. Let {E;}, be a locale orthonormal frame on (M™, ) defined by (3 ,

i=1,m
then

m

r(I) = Z(v%ida@i)_da(%gﬁi))

=1

= ZV” do(E;) Zda VME).
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By direct computations we obtain

Z;V‘?Eido(ﬁi) = v;EﬁquEiE

1 1 1 1
= E E — V% —E;
Vit P Fd 1+i§:;\/f B /¥
= mda(grad f)— mvgf,(gmdf)da(grad f)

1 m
+?ZV”Eida(E
=1

and

m

S dr(TYE) = o> TYE)

=1 i=1
= do(%%{fh + Z %AE/[EZ)

1 oy 1 LR |

1=

O A AU mo Ly g (grad £),
=1

fF+1) 2ff+1)

hence we get

(o) =

— A(f))do(grad f)

1 1 ((m—2)f—|—m—1
f )

O T 2(f+1)

1
T Vetarad sy do(grad ).

From the Theorem [3.5] we obtain

Theorem 3.6. Let o : (M™,g) — (N™, h) be harmonic. Then the map o : (M™,g) —
(N™ h) is harmonic if and only if

1

o) = (e - Rl

2(f+1)

+f + 1vda(gradf)dg(grad f) (314)

)do(grad f)

Example 3.5. If we set 0 = Idy; and f = const then o : (M™,g) — (N™, h) is harmonic.

Lemma 3.1. [I] Given a smooth map o : (M™,g) — (N™,h) between two Riemannian

manifolds and f € C*°(N), then we have

A(foo) = tracegHessg(do,do) + df (1(0)). (3.15)
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Proof. Let X,Y € (M), we have f oo € C°°(M) then

Vd(foo)(X,Y) = VE7d(foo)(Y)—d(foo)(VXY)
= Vi df(do(Y)) = df (do (VYY)
= Vdf(do(X),do(Y)) + df (Vi xydo(Y)) = df (do(VXY))

= Vdf(do(X),do(Y)) + df (Vdo(X,Y)).
By passing to the trace in the last equation and using
trace,Vdf = tracegHessy
we get

A(foo) = tracegHessg(do,do) + df (1(0)).

Theorem 3.7. The tension field of the map o : (M™,g) — (N”,ﬁ) is given by

T(o) = 7(0)+ }do’(grad(f 00))

1
+ﬁ(A(f o) —df(r(0))

_lgrad(foo)|*  |dol|?
[ 2

)(grad f)oo,(3.16)

where f: N —]0,+o0] be a strictly positive smooth function and 7(o) is the tension field of

o:(M,g) — (N,h).
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Proof. Let {E;},_17 be a locale orthonormal frame on (M™, g), then

(V. do(E;) — do(VY EY))

NE

(o) =

1

~.
Il

[
NE

(Vi do(Ei) — do (Vi E))
1

<.
I

do(Ei)(f)
f

Hessy(do(E;),do(E;))  (do(E;)(f))?

f+1 f(F+1)

h(do(E;),do(E;))
e ) oo —do(VEE))

I
NE

(Vi(s)do(Ei) + do(E;)

1

~.
I

X

Ei(fOO')

(V% do(E;) — do(Vi E;) + 7

Il

I
—

do(E;)

+(H638f(da(Ei),dU(Ei)) (&
f+1 I
h(do(E;), do(E))

— 27+ 1) )(gradf)oa)

= 7(0)+ Jltda(grad(f 00))
+(traceHeSSf(da, do) | grad (foo)|? B |do||?
f+1 f(F+1) 2(f+1)

p—— }da(gmd(f 00))

A(foo)=df(r(0)) llgrad(foo)l*  [do|?
f+1 f(f+1) 2(f+1)

= 7(0)+ jlcda(grad(f 00))

)(grad floo

—|—( )(gradf)oa

1
+ﬁ(A(f°U) —df(7(0))

_grad(foo)|?  |do]?
f 2

)(grad ) o o.
From the Theorem [B.7] we obtain

Theorem 3.8. The map o : (M™,g) — (N”,E) is harmonic if and only if

L lgrad (o) _ ol
70) = (AT ea) — o) - T =

—;da(grad(foa)). (3.17)

J(grad f) oo
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4. HARMONICITY ON PRODUCT MANIFOLD

Let (M, g) and (N, h) be a Riemannian manifolds.

Definition 4.1.  Let (M,g) and (N, h) be two Riemannian manifolds of dimension m and

n respectively. We define the product metric on M x N by
G=7"g+n"h

where 1 : M X N — M andn: M x N — N denote the first and the second canonical

projection.

Proposition 4.1.  For all vector fields X1, Xo € H(M)andY1,Y2 € H(N) we have

G((X1, Y1), (X2, Y2)) = g(X1, Xo) + h(Y3, Y2)
G((X1,0),(X2,0)) = g(X1,Xy)
G((0,Y1),(0,Y2)) = h(¥1,Y3)
G((X1,0),(0,Y2)) = o0.

Subsequently, if X € H(M) and Y € H(N), then we denote (X,Y) by X +Y.

Remark 4.1. o Any vector field of H(M) is orthogonal to all vector fields of H(N).

o Let (B, ...,En) (resp (Epmii, oy Emin)) is an orthonormal basis of H(M) (resp H(N))
then (E1, ..., Epyn) is an orthonormal basis of H(M x N).

o Let f € C®(M), then A(f) =", Hess¢(E;, E;).

Proposition 4.2.  Let (M, g) and (N, h) be two Riemannian manifolds. If ¥V (resp NV )
denote the connection of Levi-Civita on M (resp N ), then the levi-civita connection V on the
manifold M x N associated with the product metric G = w*g + n*h is verifies the following
properties:

;

Vx, Xo =M Vx, Xy
Vy, Yo =V Vy, V3

Vi, Y1 = Vy, X2 =0

V(X1+Y1) (X2 + YQ) =M Vx, X2 +N Vv, Ys
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for any X1,Y1 € H(M) and Xo,Y> € H(N).

Lemma 4.1. Let (M™,g) and (N™, h) be two Riemannian manifolds and f € C*(M). If
P:(z,y) e MxN —yeN (resp P:(x,y) € M x N — (0,y) € M x N) is the second

projection, then we have

grad(f) = gradg(f) = grady(f),

dP(grad(f)) = 0,

~ X
dP(VxX) = dP(VXX)—i-;f)dP(X) (4.18)
where X € H(M x N).
Proof. The proof of the formula (4.18)) is a direct consequence of Theorem

Theorem 4.1. Let (M™, g) be a Riemannian manifolds and (N™,h) be an Euclidian mani-

fold. If f € C*°(M) is a smooth positif function, then the second projection
P:(MxN,G) — (N,h)
(z,y) = vy

is harmonic map. where G = g+ h.

Proof. Let (E1, ..., Ey,) be an orthonormal basis on (M™, g) such as £} = grad(f) and
(Em+1y -, Bman) be an orthonormal basis on (N™, h) such as NVEiEj =0, (i,j>m+1),
then (E1, ..., Eyyn) is an orthonormal basis on (M x N, g + h).

From Lemma [£.1] we obtain:

N iy d P(E) —~ dP(VzE) = —dP(VyE)

for 1 <i <m, and
N - < N . .
VdP(E)dP(E,;) — dP(VEEi) = VEE,- — dP(VEEi)

for m +1 < i <m+n. We therefore deduce 7(P) = 0.

We find the same result for the following theorem
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Theorem 4.2. Let (M™, g) be a Riemannian manifolds and (N™,h) be an Euclidian mani-

fold. If f € C>°(M) is a smooth positif function, then

P:(MxN,G) - (MxN,G)

(z,y) = (0,y)
is harmonic map. where G = g+ h.

Theorem 4.3. Let (M™, g) be a Riemannian manifolds and (N",h) be an Euclidian mani-
fold. If f € C*°(M) is a smooth positif function, then the tension field of

P:(MxN,G) — (MxN,G)
(z,y) — (0,y)
s given by

= mgmd(f)-

Proof. Similarly to the proof of Theorem [4.1] we obtain

VapE)d P(E) —dP(VgE) = 0, (i<m).
~ 1 |
Vap@ydP(E) = dP(ViB) = —gryoradlf), (G zm+1).

Theorem 4.4. Let (M™,g) be a Riemannian manifolds and (N",h) be an Euclidian mani-

fold. If f € C>°(M) is a smooth positif function, then the tension field of

P:(MxN,G) — (MxN,G)

(z,y) — (0,y)

s given by

where G = g+ h.
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Proof. Let i € {m+1,..,n+ m}, from Theorem and Lemma we obtain

Vap@)dP(E) —dP(VgE) = Vg

 G(ELE)
= —mgrad(f)

1
= ———————grad(f).
DL (f)
Example 4.1. Let (M, g) = (IR™,d2z?, (m > 3) and f(x1,T2, T30, Tpn)

= f(x1,z2) such that (3‘%)2 + (ﬁf = 1. If we put

0o

P:(M,g) — (M,yg)

then we obtain

So

Then P is harmonic.

On the other hand, the tension field of the projection

P:(M,g) — (M,g)

Therefore, P is non-harmonic.
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Theorem 4.5. Let (M™, g) be a Riemannian manifolds and (N™,h) be an Euclidian mani-

fold. If f € C>°(M) is a smooth positif function, then the tension field of

Q: (M xN,G) — (M,g)

(z,y) = =«

s given by
1 m+m-2)(f+1)+1
Q) =~ lan+ D Jeradlh)
Proof. Let (Ey, ..., Ey,) be an orthonormal basis on (M™, g) such as E; = grad(f) and
(Em+1, -, Bm4n) be an orthonormal basis on (N™, h) such as NVEZ.E]- =0, (i,j>m+1),
then (F1, ..., Emin) is an orthonormal basis on (M x N, g+ h).
From Remark [3.1] and Theorem we have:
m+n _ o m+n .
3 {MVdQ(E)dQ(Ei) _ dQ(VEEZ-)] = — 3 dQ(VEE)
i=m-+1 i=m-+1
_ N GELE)
i:;l a1 o)
= e rorad(f)
2f(f+1)
V0@ dQE) — dQ(VgE) = MVRE -VgE
_ B (BW) G(E, E)
= 7 E1+f(f+1)grad(f)+ 2 +1) grad(f)
1 1

= —mgmd(f) + ngd(f) + 2(f grad(f)

B -1 Hess¢(Ey, Er)

= g s o)

3 [V dQUE) - dQ(VEE)] =

=2

[MVEE - %EE}

MMS 1M

|grad(s)

- G EZ,E HCSSf(Ei,EZ‘)
B [2f+1 O f(F+D
B m—1 A(f) ra
- Lfr+y f(f+1)}g A
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Theorem 4.6. Let (M™, g) be a Riemannian manifolds and (N™,h) be an Euclidian mani-

fold. If f € C*°(M) is a smooth positif function, then the tension field of

Q:(MxN,G) - (MxN,G)

(z,y) — (2,0)

s given by

The proof of Theorem follows immediately from the Remark Remark and
Theorem 2.1

Theorem 4.7. Let (M™, g) be a Riemannian manifolds and (N",h) be an Euclidian mani-

fold. If f € C°(M) is a smooth positif function, then the tension field of

Q:(MxN,G) = (MxN,G)

(,y) = (2,0)

s given by
(@) = g [ - B LT g
fF+1) 2(f+1) '
Proof. Let (E1, ..., E,) be an orthonormal basis on (M™, g) such as £} = grad(f) and

(Emt1, -y Em+n) be an orthonormal basis on (N™,h) such as NV, E; =0, (i,j > m+1),
then (F1, ..., Em4n) is an orthonormal basis on (M x N, g+ h).
From Remark Remark [4.1] and Theorem we obtain:

ﬁdQ(Ei)dQ(EZ’) - dQ(VEiEi) = 0, (m+1<i<m+n).

%dQ(El)dQ(El) —dQ(Vep,E\) = Vg Ei—VgE
[HGSSf(El,El) 1
f(f+1) 2(f +

%dQ(Ei)dQ(Ei) ~dQ(VgE) = VgEi —VgkE; (2<i<m)

_ [Hessp(Ei, Ei) 1 -
= [THren - mmrmleredd)
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