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FRENET CURVES IN 3-DIMENSIONAL LORENTZIAN CONCIRCULAR
STRUCTURE MANIFOLDS

MUSLUM AYKUT AKGUN &

ABSTRACT. In this paper, we give some characterizations of Frenet curves in 3-dimensional
Lorentzian concircular structure manifolds((LC'S), manifolds). We define Frenet equations
and the Frenet elements of these curves. We also obtain the curvatures of non-geodesic
Frenet curves on (LCS), manifolds. Finally we give some theorems, corollaries and exam-
ples for these curves.
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1. INTRODUCTION

The differential geometry of curves in manifolds investigated by several authors. Especially
the curves in contact and para-contact manifolds drew attention and studied by the authors.
B. Olszak[I7], derived the conditions for an a.c.m structure on M to be normal and point
out some of their consequences. B. Olszak completely characterized the local nature of
normal a.c.m. structures on M by giving suitable examples. Moreover B. Olszak gave some
restrictions on the scalar curvature in contact metric manifolds which are conformally flat or
of constant ¢-sectional curvature in[16].

J. Welyczko[22], generalized some of the results for Legendre curves in three dimensional

normal a.c.m. manifolds, especially, quasi-Sasakian manifolds. J. Welyczko [23], studied
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the curvatures of slant Frenet curves in three-dimensional normal almost paracontact metric
manifolds.

B. E. Acet and S. Y. Perktas [I] obtained the curvatures of Legendre curves in 3-dimensional
(€,0) trans-Sasakian manifolds. Ji-Eun Lee, defined Lorentzian cross product in a three-
dimensional almost contact Lorentzian manifold and proved that —*; = cons. along a Frenet
slant curve in a Sasakian Lorentzian three-manifold. Furthermore, Ji-Eun Lee proved that
v is a slant curve if and only if M is Sasakian for a contact magnetic curve « in contact
Lorentzian 3-manifold M in[I2]. Ji-Eun Lee, also gave some characterizations for the gener-
alized Tanaka-Webster connection in a contact Lorentzian manifold in[13].

A. Yildinm[25] obtained the Frenet apparatus for Frenet curves on three dimensional
normal almost contact manifolds and characterized some results for these curves.

U.C.De and K.De[10] studied Lorentzian Trans-Sasakian and conformally flat Lorentzian
Trans-Sasakian manifolds.

The LCS manifolds was introduced by [19] with an example. A. A. Shaikh[20] studied
various types of (LCS),-manifolds and proved that in such a manifold the Ricci operator
commutes with the structure tensor .

In this framework, the paper is organized in the following way. Section 2 with two subsec-
tions, we give basic definitions of a (LC'S),,-manifolds manifold. In the second subsection we
give the Frenet-Serret equations of a curve in (LCS)s manifold. We give finally the Frenet
elements of a Frenet curve in (LC'S)s manifold and give theorems, corollaries and examples

for these curves in the third and fourth sections.

2. PRELIMINARIES

2.1. Lorentzian Concircular Structure Manifolds. A Lorentzian manifold of dimension
n is a doublet (N , g), where N is a smooth connected para-compact Hausdorff manifold of
dimension n and § is a Lorentzian metric, that is, N admits a smooth symmetric tensor field
g of type (0,2)such that for each point p € N the tensor g, : T,N x T,N — R is a non
degenerate inner product of signature (—,+, ..., +), where Tp]\7 denotes the tangent space of
N at p and R is the real number space. A non zero vector field V € T, pN is called spacelike

(resp.non-spacelike, null and timelike) if it satisfies g, (V,V) > 0 (resp., < 0,=, < 0).[15]
Definition 2.1. In a Lorentzian manifold (N,g) a vector field w is defined by

g(U,p) = A(U) (2.1)
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for any U € x(N) is said to be a concircular vector field if
(Vo A)(V) =a{g(U,V) +wU)w(V)}, (2.2)

where « is a non-zero scalar and w is a closed 1-form.[24]

If a Lorentzian manifold N admits a unit timelike concircular vector field &, called gener-

ator of the manifold, then we have
9(¢,¢) = -1 (2.3)
Since ¢ is the unit concircular vector field on IV, there exists a non-zero 1-form 1 such that

9(U, &) = n(U), (2.4)

which satisfies the following equation

(Vum)(V) = a{g(U, V) +n(U)n(V)},  (a#0) (2.5)

for all vector fields U and V, where V gives the covariant differentiation with respect to the

Lorentzian metric g and « is a non-zero scalar function satisfies

(Vva) =Ua =da(U) = pn(U), (2.6)
where p is a certain scalar function defined by p = —(&a). If we take
1
oU =V, 2.7

then with the help of (2.3), (2.4) and (2.6|), we can find
U =U +n(U)E, (2.8)

which shows that ¢ is a tensor field of type (1,1), called the structure tensor of the manifold
N. Hence the Lorentzian manifold N of class C* equipped with a unit timelike concircular
vector field ¢, its associated 1-form n and (1,1) tensor field ¢ is said to be a Lorentzian
concircular structure manifold (i.e. (LCS),, manifold)[19]. Moreover, if o = 1, then we have
the LP-Sasakian structure of Matsumoto[14]. So we can say the generalization of LP-Sasakian
manifold gives us the (LCS), manifold. It is noteworthy to mention that LCS-manifold is
invariant under a conformal change whereas LP-Sasakian structure is not so[I§]. In (LCS),

manifolds, the following relations hold[19]

U =U+nU)E, n(§) =1, (2.9)
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and

g(pU, V) = g(U, V) +n(U)n(V). (2.10)

2.2. Frenet Curves. Let ¢ : I — N be a unit speed curve in (LC'S); manifold N such that
¢’ satisfies g(g",(') = ¢1 = F1. The constant €; is called the casual character of (. The
constants €5 and e3 defined by g(n,n) = 2 and g(b,b) = e3 and called the second casual
character and third casual character of (, respectively. Thus we £169 = —e3.

A unit speed curve ( is said to be a spacelike or timelike if its casual character is 1 or -1,
respectively. A unit speed curve ( is said to be a Frenet curve if g({ " C/) # 0. A Frenet curve
¢ admits an orthonormal frame field {¢t = C/,n, b} along (. Then the Frenet-Serret equations

given as follows:

Vg’t = &9KN
Ven = —eikt —e3rh (2.11)
chb = £9TN

where K = ’Vg’ C/| is the geodesic curvature of ¢ and 7 is geodesic torsion [12]. The vector
fields t, n and b are called the tangent vector field, the principal normal vector field and the
binormal vector field of {, respectively.
If the geodesic curvature of the curve ¢ vanishes, then the curve is called a geodesic curve. If
Kk = cons. and T = 0, then the curve is called a pseudo-circle and pseudo-helix if the geodesic
curvature and torsion are constant.

A curve in a three dimensional Lorentzian manifold is a slant curve if the tangent vector
field of the curve has constant angle with the Reeb vector field,i.e. n(¢") = —g({’, &) = cost =

constant. If n(¢") = —g(¢’,€) = 0, then the curve ( is called a Legendre curve[12].

3. MAIN RESULTS

In this section we consider a (LCS); manifold N. Let ¢ : I — N be a Frenet curve
with the geodesic curvature s # 0, given with the arc-parameter s and V be the Levi-Civita

connection on N. From the basis (¢, ¢, &) we obtain an orthonormal basis {e1, e, e3} which
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satisfy the equations

/

er. = (¢,
o - 2 (312
VEL+ p?
b = o8¢
Ver+ p?
where
n(¢) =g(¢',€) = p. (3.13)

Then if we write the covariant differentiation of ¢’ as

ngel = veg + ues (3.14)

such that

v=g(Vyer,ez) (3.15)

is a certain function. Moreover we obtain v by

/
n= g(vg’elaGS) = &2 (\/6':_7,02 — 81am> , (3.16)
1

where p'(s) = w. Then we find
- g1pv
Vees =—ver+ | e3a+ ——— | e3 (3.17)
¢ ( Ver+ PZ)

and

Tees = —er - < y P) (3.18)

Ver+ p?

The fundamental forms of the tangent vector ¢’ on the basis of the equation (3.12) is

0 v 7
13
[wi (] =] —¥ 0 e300+ 7\/;7”/32 (3.19)
and the Darboux vector connected to the vector ¢’ is
€1pV
w((') = | esa+ i pe + ves. (3.20)
Ver+p?

So we can write

@Clei = W(C/) N E;e; (1 <1< 3) (321)
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Thus, for any vector field Z = Z?:l e; € x(IN) strictly dependent on the curve ¢ on N and

we have the following equation
VoZ=w((YANZ+) eiei0]e;. (3.22)
i=1

3.1. Frenet Elements of (. Let a curve ( : I — N be a Frenet curve with the geodesic
curvature x # 0, given with the arc parameter s and the elements {¢,n,b, k,7}. The Frenet

elements of the curve  can be calculated as above:

If we consider the equation (3.14]), then we get
gokn = ?C/el = veg + ues. (3.23)

If we consider (3.16)) and (3.23]) we find

2

/

K= |V2+ L—sla\/elqﬂo? . (3.24)
Ver+ p?

On the other hand

/ /

_ 14 1%

VC/n = <) e + 7VC/62 + <'u) es + LVcleg (3.25)
£2K g9K E2K &2k

= —e1kt —e37B.

By means of the equation (3.17)) and (3.18) we find

/
v W e1pv
—e3TB = o —— | 8300 + —/—— e 3.26
3 [(52/{) on ( 3 2 +p2> 2 ( )
/
I v €1pV
+ (=) +— o+ — ]| es
(52"6> E2k ( Ver+ p2>

By a direct computation we find following

s\ 2 " /72 s\ 1 ” " 2
GG -FER) @) e
Eo9K E9K Eo2R EoR EoK \ E2K
Taking the norm of the last equation by using (3.26)) and if we consider the equations (3.16))
and (3.27) in (3.26)) we obtain

M2

T = |E3 + (3.28)

IS 1A

o _ 2
e | [[2E)
€1 +p2 K

Moreover we can write the Frenet vector fields of ¢ as in the following theorem
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Theorem 3.1. Let N be a (LCS); manifold and ¢ be a Frenet curve on N. The Frenet

vector fields t, n and b are in the form of

t = CI = €1,
n = Leg—l— Leg, (3.29)
9K 9K
b 1 ( v >/ 1 L _Epv
= —|l— ) —— |esa+——=]]¢
€3T €9k E9K 3 Ver+ p? ’
1 ( i )/+ v L
- — || — g3 + ———— | | e3.
€3T 9K 9K s Ver+ p? ’
Note that
2
¢ = apt— VL, (3.30)
K
Ver+ p? <M>,+V S E1pV
€3T 9K €9k s Ver+ p?

Let ¢ be a non-geodesic Frenet curve given with the arc-parameter s in (LC'S),; manifold

N. So one can state the above theorems.

Theorem 3.2. Let N be a (LCS)4 manifold and ¢ be a Frenet curve on N. ( is a slant
curve (p = n(¢") = cosf = cons.) on N if and only if the Frenet elements {t,n,b,x, 7} of ¢

are as follows

t = elzglv

e2¢’
Vel + cos?0’

e1€ — cosf(’
5

n = ey =

b = e3=cr—F—v—or—>, 3.31

3 2 Vel + cos?6 ( )
ko= V2 +a2(e + cos?0),

2

oy Ercosty K v )T+ <a\/51 +cos29>’
- e - e i

s Vel + cos?0 EoR K

Proof. Let the curve ¢ be a slant curve in (LCS); manifold N. If we take account

the condition p = n(¢’") = cosf = constant in the equations (3.12)), (3.24) and (3.28]) we find
(3.31)). If the equations in (3.31]) hold, from the definition of slant curves it is obvious that

the curve ( is a slant curve.
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Corollary 3.1. Let N be a (LCS)5 manifold and ¢ be a slant curve on N. If the ge-

odesic curvature k of the curve  is non-zero constant, then the geodesic torsion of ( is
Ov
< 3 1\/a1+c0320

Corollary 3.2. Let N be a (LCS); manifold and ¢ be a slant curve on N. If the geodesic

T = and ¢ is a pseudo-heliz on N.

curvature k of the curve ¢ is not constant and the geodesic torsion of ¢ is T =0 then ( is a

plane curve on N and function v satisfies the equation

v= /(01 + cov) K2ds, (3.32)

€3 £1cosb

where Cc1 = m and Cy = m.

Theorem 3.3. Let N be a (LCS); manifold and ¢ is a Frenet curve on N. ( is a spacelike
Legendre curve(p = n(¢") = 0) in this manifold if and only if the Frenet elements {t,n,b, k, T}

of ¢ are as follows

t = e = Clv
n = ey =¢egp(,
b = €3 = —835, (3.33)

kK = VV2+a2,
12 172
v K
E9K K
Proof. Let the curve ¢ be a Legendre curve in (LCS); manifold N. If we take

account the condition p = n(¢’) = 0 in the equations (3.12)), (3.24]) and (3.28) we find ([3.33)).
If the equations in (3.33)) hold, from the definition of Legendre curves it is obvious that the

curve ( is a Legendre curve on N.

Corollary 3.3. Let the curve ¢ is a Legendre curve in (LCS),; manifold N. If the geodesic
curvature k of the curve ¢ is non-zero constant, then the geodesic torsion of ( is T =0 and

¢ 1s a plane curve on N.

4. EXAMPLES

Let N be the 3-dimensional manifold given

N ={(z,y,2) € R,z £ 0}, (4.34)
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where (x,y,z) denote the standart co-ordinates in R3. Then
3} 0 0 0
B, =¢7 <CL‘ + y) , FEy=¢€¢"— F3= — (4.35)

are linearly independent of each point of N. Let g be the Lorentzian metric tensor defined

by
(B, Br) = g(Ea, Eo) =1,  g(E3,E3) = —1, (4.36)

for i,7 = 1,2,3[2]. Let n be the 1-form defined by n(Z) = g(Z, E3) for any Z € T'(TN). Let
¢ be the (1,1)-tensor field defined by

pEy = FE1, ¢pEy=Ey ¢k3=0. (4.37)
Then using the condition of the linearity of ¢ and g, we obtain n(FEs) = —1,

$2Z = 7+ (Z)Bs, (4.38)
for all Z,W € T'(T'N). Thus for £ = E3, (p,&,n, g) defines a Lorentzian paracontact structure
on N.

Now, let V be the Levi-Civita connection with respect to the Lorentzian metric g. Then

we obtain
[E1, Es] = —e*Es, [E1, B3] = —FE1, [E, E3]=—FE». (4.39)

If we use the Koszul formulae for the Lorentzian metric tensor g, we can easily calculate the

covariant derivations as follows:

Vg B =—FE3, VgE =¢’Ey,, Vg E3= -,
VE2E3 = —EQ, szEg = —eZEl - Eg, (440)
Vg, By =VgE =VgE=Vg 3 =0.

From the about represantations, one can easily see that (¢,&,7,g) is a (LCS)4 structure on

N, that is, N is an (LCS);-manifold with a = —1 and p = 0.
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Example 4.1. Let 3 be a spacelike Legendre curve in the (LCS),; manifold N and defined

as

s = B(s) = (82,52,ln2) ,

where the curve B parametrized by the arc length parameter t. If we differentiate B(t) and

consider we find

er = '), (4.41)

1 1
ey = ﬁEl + EEQ (4.42)
€3 = EQES. (4.43)

If we consider the equations (3.15), (3.14}), (3-10), (3.24}) and (3.28) we can write

1
=0, = -8, V=-——1 (4.44)

e

From the above equations we see that the curve B is a Legendre heliz curve in N.

Example 4.2. Let v be a spacelike Legendre curve in the (LCS); manifold N and defined
as

v: I — N

s —v(s) = (coss, sins, 1),

where the curve v parametrized by the arc length parameter t. If we differentiate v(t) and

consider we find

er = v'(t), (4.45)
€9 = €9 (—sm( )E1 + cos(— )E2> (4.46)
€3 = 8283. (447)

If we consider the equations (3.15), (3.14), (3.16), (3.24) and (3.28) we can write

p=0, p=—ea, v=0, (4.48)

k=T1=]lal.

So, the curve v(s) is a Legendre heliz curve in N.
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