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FRENET CURVES IN 3-DIMENSIONAL LORENTZIAN CONCIRCULAR

STRUCTURE MANIFOLDS

MÜSLÜM AYKUT AKGÜN ID ∗

Abstract. In this paper, we give some characterizations of Frenet curves in 3-dimensional

Lorentzian concircular structure manifolds((LCS)3 manifolds). We define Frenet equations

and the Frenet elements of these curves. We also obtain the curvatures of non-geodesic

Frenet curves on (LCS)3 manifolds. Finally we give some theorems, corollaries and exam-

ples for these curves.
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1. Introduction

The differential geometry of curves in manifolds investigated by several authors. Especially

the curves in contact and para-contact manifolds drew attention and studied by the authors.

B. Olszak[17], derived the conditions for an a.c.m structure on M to be normal and point

out some of their consequences. B. Olszak completely characterized the local nature of

normal a.c.m. structures on M by giving suitable examples. Moreover B. Olszak gave some

restrictions on the scalar curvature in contact metric manifolds which are conformally flat or

of constant ϕ-sectional curvature in[16].

J. Welyczko[22], generalized some of the results for Legendre curves in three dimensional

normal a.c.m. manifolds, especially, quasi-Sasakian manifolds. J. Welyczko [23], studied
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the curvatures of slant Frenet curves in three-dimensional normal almost paracontact metric

manifolds.

B. E. Acet and S. Y. Perktaş [1] obtained the curvatures of Legendre curves in 3-dimensional

(ε, δ) trans-Sasakian manifolds. Ji-Eun Lee, defined Lorentzian cross product in a three-

dimensional almost contact Lorentzian manifold and proved that κ
τ−1 = cons. along a Frenet

slant curve in a Sasakian Lorentzian three-manifold. Furthermore, Ji-Eun Lee proved that

γ is a slant curve if and only if M is Sasakian for a contact magnetic curve γ in contact

Lorentzian 3-manifold M in[12]. Ji-Eun Lee, also gave some characterizations for the gener-

alized Tanaka-Webster connection in a contact Lorentzian manifold in[13].

A. Yıldırım[25] obtained the Frenet apparatus for Frenet curves on three dimensional

normal almost contact manifolds and characterized some results for these curves.

U.C.De and K.De[10] studied Lorentzian Trans-Sasakian and conformally flat Lorentzian

Trans-Sasakian manifolds.

The LCS manifolds was introduced by [19] with an example. A. A. Shaikh[20] studied

various types of (LCS)n-manifolds and proved that in such a manifold the Ricci operator

commutes with the structure tensor φ.

In this framework, the paper is organized in the following way. Section 2 with two subsec-

tions, we give basic definitions of a (LCS)n-manifolds manifold. In the second subsection we

give the Frenet-Serret equations of a curve in (LCS)3 manifold. We give finally the Frenet

elements of a Frenet curve in (LCS)3 manifold and give theorems, corollaries and examples

for these curves in the third and fourth sections.

2. Preliminaries

2.1. Lorentzian Concircular Structure Manifolds. A Lorentzian manifold of dimension

n is a doublet
(
N̄ , ḡ

)
, where N̄ is a smooth connected para-compact Hausdorff manifold of

dimension n and ḡ is a Lorentzian metric, that is, N̄ admits a smooth symmetric tensor field

g of type (0, 2)such that for each point p ∈ N̄ the tensor ḡp : TpN̄ × TpN̄ −→ R is a non

degenerate inner product of signature (−,+, ...,+), where TpN̄ denotes the tangent space of

N̄ at p and R is the real number space. A non zero vector field V ∈ TpN̄ is called spacelike

(resp.non-spacelike, null and timelike) if it satisfies ḡp (V, V ) > 0 (resp., ≤ 0,=, < 0).[15]

Definition 2.1. In a Lorentzian manifold
(
N̄ , ḡ

)
a vector field w is defined by

ḡ(U, ρ) = A(U) (2.1)
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for any U ∈ χ(N̄) is said to be a concircular vector field if

(∇UA)(V ) = α {ḡ(U, V ) + w(U)w(V )} , (2.2)

where α is a non-zero scalar and w is a closed 1-form.[24]

If a Lorentzian manifold N̄ admits a unit timelike concircular vector field ξ, called gener-

ator of the manifold, then we have

ḡ(ξ, ξ) = −1. (2.3)

Since ξ is the unit concircular vector field on N̄ , there exists a non-zero 1-form η such that

ḡ(U, ξ) = η(U), (2.4)

which satisfies the following equation

(∇Uη)(V ) = α {ḡ(U, V ) + η(U)η(V )} , (α ̸= 0) (2.5)

for all vector fields U and V, where ∇ gives the covariant differentiation with respect to the

Lorentzian metric ḡ and α is a non-zero scalar function satisfies

(∇Uα) = Uα = dα(U) = ρη(U), (2.6)

where ρ is a certain scalar function defined by ρ = −(ξα). If we take

φU =
1

α
∇Uξ, (2.7)

then with the help of (2.3), (2.4) and (2.6), we can find

φU = U + η(U)ξ, (2.8)

which shows that φ is a tensor field of type (1,1), called the structure tensor of the manifold

N̄ . Hence the Lorentzian manifold N̄ of class C∞ equipped with a unit timelike concircular

vector field ξ, its associated 1-form η and (1,1) tensor field φ is said to be a Lorentzian

concircular structure manifold (i.e. (LCS)n manifold)[19]. Moreover, if α = 1, then we have

the LP-Sasakian structure of Matsumoto[14]. So we can say the generalization of LP-Sasakian

manifold gives us the (LCS)n manifold. It is noteworthy to mention that LCS-manifold is

invariant under a conformal change whereas LP-Sasakian structure is not so[18]. In (LCS)3

manifolds, the following relations hold[19]

φ2U = U + η(U)ξ, η(ξ) = −1, (2.9)

φ(ξ) = 0, η(φU) = 0,
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and

ḡ(φU,φV ) = ḡ(U, V ) + η(U)η(V ). (2.10)

2.2. Frenet Curves. Let ζ : I → N̄ be a unit speed curve in (LCS)3 manifold N̄ such that

ζ
′
satisfies ḡ(ζ

′
, ζ

′
) = ε1 = ∓1. The constant ε1 is called the casual character of ζ. The

constants ε2 and ε3 defined by ḡ(n, n) = ε2 and ḡ(b, b) = ε3 and called the second casual

character and third casual character of ζ, respectively. Thus we ε1ε2 = −ε3.

A unit speed curve ζ is said to be a spacelike or timelike if its casual character is 1 or -1,

respectively. A unit speed curve ζ is said to be a Frenet curve if ḡ(ζ
′
, ζ

′
) ̸= 0. A Frenet curve

ζ admits an orthonormal frame field {t = ζ
′
, n, b} along ζ. Then the Frenet-Serret equations

given as follows:

∇ζ′ t = ε2κn

∇ζ′n = −ε1κt− ε3τb (2.11)

∇ζ′ b = ε2τn

where κ = |∇ζ′ ζ
′ | is the geodesic curvature of ζ and τ is geodesic torsion [12]. The vector

fields t, n and b are called the tangent vector field, the principal normal vector field and the

binormal vector field of ζ, respectively.

If the geodesic curvature of the curve ζ vanishes, then the curve is called a geodesic curve. If

κ = cons. and τ = 0, then the curve is called a pseudo-circle and pseudo-helix if the geodesic

curvature and torsion are constant.

A curve in a three dimensional Lorentzian manifold is a slant curve if the tangent vector

field of the curve has constant angle with the Reeb vector field,i.e. η(ζ ′) = −ḡ(ζ ′, ξ) = cosθ =

constant. If η(ζ ′) = −ḡ(ζ ′, ξ) = 0, then the curve ζ is called a Legendre curve[12].

3. Main Results

In this section we consider a (LCS)3 manifold N̄ . Let ζ : I → N̄ be a Frenet curve

with the geodesic curvature κ ̸= 0, given with the arc-parameter s and ∇̄ be the Levi-Civita

connection on N̄ . From the basis (ζ
′
, φζ

′
, ξ) we obtain an orthonormal basis {e1, e2, e3} which
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satisfy the equations

e1 = ζ
′
,

e2 =
ε2φζ

′√
ε1 + ρ2

, (3.12)

e3 = ε2
ε1ξ − ρζ

′√
ε1 + ρ2

where

η(ζ
′
) = ḡ(ζ

′
, ξ) = ρ. (3.13)

Then if we write the covariant differentiation of ζ
′
as

∇̄ζ′e1 = νe2 + µe3 (3.14)

such that

ν = ḡ(∇̄ζ′e1, e2) (3.15)

is a certain function. Moreover we obtain ν by

µ = ḡ(∇̄ζ′e1, e3) = ε2

(
ρ′√

ε1 + ρ2
− ε1α

√
ε1 + ρ2

)
, (3.16)

where ρ′(s) = dρ(ζ(s))
ds . Then we find

∇̄ζ′e2 = −νe1 +

(
ε3α+

ε1ρν√
ε1 + ρ2

)
e3 (3.17)

and

∇̄ζ′e3 = −µe1 −

(
ε3α+

ε1ρν√
ε1 + ρ2

)
e2. (3.18)

The fundamental forms of the tangent vector ζ ′ on the basis of the equation (3.12) is

[ωij(ζ
′)] =


0 ν µ

−ν 0 ε3α+ ε1ρν√
ε1+ρ2

−µ −ε3α− ε1ρν√
ε1+ρ2

0

 (3.19)

and the Darboux vector connected to the vector ζ ′ is

ω(ζ ′) =

(
ε3α+

ε1ρν√
ε1 + ρ2

)
e1 − µe2 + νe3. (3.20)

So we can write

∇̄ζ′ei = ω(ζ ′) ∧ εiei (1 ≤ i ≤ 3). (3.21)
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Thus, for any vector field Z =
∑3

i=1 θ
iei ∈ χ(N̄) strictly dependent on the curve ζ on N̄ and

we have the following equation

∇̄ζ′Z = ω(ζ ′) ∧ Z +
3∑

i=1

εiei[θ
i]ei. (3.22)

3.1. Frenet Elements of ζ. Let a curve ζ : I → N̄ be a Frenet curve with the geodesic

curvature κ ̸= 0, given with the arc parameter s and the elements {t, n, b, κ, τ}. The Frenet

elements of the curve ζ can be calculated as above:

If we consider the equation (3.14), then we get

ε2κn = ∇̄ζ′e1 = νe2 + µe3. (3.23)

If we consider (3.16) and (3.23) we find

κ =

√√√√ν2 +

(
ρ′√

ε1 + ρ2
− ε1α

√
ε1 + ρ2

)2

. (3.24)

On the other hand

∇̄ζ′n =

(
ν

ε2κ

)′
e2 +

ν

ε2κ
∇ζ′e2 +

(
µ

ε2κ

)′
e3 +

µ

ε2κ
∇ζ′e3 (3.25)

= −ε1κt− ε3τB.

By means of the equation (3.17) and (3.18) we find

−ε3τB =

[(
ν

ε2κ

)′
− µ

ε2κ

(
ε3α+

ε1ρν√
ε1 + ρ2

)]
e2 (3.26)

+

[(
µ

ε2κ

)′
+

ν

ε2κ

(
ε3α+

ε1ρν√
ε1 + ρ2

)]
e3.

By a direct computation we find following[(
ν

ε2κ

)′]2
+

[(
µ

ε2κ

)′]2
=

[
−
(

ν

ε2κ

)′ µ

ε2κ
+

ν

ε2κ

(
µ

ε2κ

)′]2
. (3.27)

Taking the norm of the last equation by using (3.26) and if we consider the equations (3.16)

and (3.27) in (3.26) we obtain

τ =

∣∣∣∣∣∣∣∣∣∣
ε3α+

ε1ρν√
ε1 + ρ2

−

√√√√√√√√
[(

ν

ε2κ

)′]2
+


ε2

(
ρ′√
ε1+ρ2

− ε1α
√
ε1 + ρ2

)
κ


′

2
∣∣∣∣∣∣∣∣∣∣
. (3.28)

Moreover we can write the Frenet vector fields of ζ as in the following theorem



INT. J. MAPS MATH. (2022) 5(1):29–40 / FRENET CURVES IN 3-DIMENSIONAL LCS MANIFOLDS 35

Theorem 3.1. Let N̄ be a (LCS)3 manifold and ζ be a Frenet curve on N̄ . The Frenet

vector fields t, n and b are in the form of

t = ζ ′ = e1,

n =
ν

ε2κ
e2 +

µ

ε2κ
e3, (3.29)

b = − 1

ε3τ

[(
ν

ε2κ

)′
− µ

ε2κ

(
ε3α+

ε1ρν√
ε1 + ρ2

)]
e2

− 1

ε3τ

[(
µ

ε2κ

)′
+

ν

ε2κ

(
ε3α+

ε1ρν√
ε1 + ρ2

)]
e3.

Note that

ξ = ε1ρt−
µ
√

ε1 + ρ2

κ
n (3.30)

−
√
ε1 + ρ2

ε3τ

[(
µ

ε2κ

)′
+

ν

ε2κ

(
ε3α+

ε1ρν√
ε1 + ρ2

)]
b.

Let ζ be a non-geodesic Frenet curve given with the arc-parameter s in (LCS)3 manifold

N̄ . So one can state the above theorems.

Theorem 3.2. Let N̄ be a (LCS)3 manifold and ζ be a Frenet curve on N̄ . ζ is a slant

curve (ρ = η(ζ ′) = cosθ = cons.) on N̄ if and only if the Frenet elements {t, n, b, κ, τ} of ζ

are as follows

t = e1 = ζ ′,

n = e2 =
ε2φζ

′
√
ε1 + cos2θ

,

b = e3 = ε2
ε1ξ − cosθζ ′√
ε1 + cos2θ

, (3.31)

κ =
√

ν2 + α2 (ε1 + cos2θ),

τ =

∣∣∣∣∣∣∣ε3α+
ε1cosθν√
ε1 + cos2θ

−

√√√√[( ν

ε2κ

)′]2
+

[(
α
√
ε1 + cos2 θ

κ

)′]2∣∣∣∣∣∣∣ .
Proof. Let the curve ζ be a slant curve in (LCS)3 manifold N̄ . If we take account

the condition ρ = η(ζ ′) = cosθ = constant in the equations (3.12), (3.24) and (3.28) we find

(3.31). If the equations in (3.31) hold, from the definition of slant curves it is obvious that

the curve ζ is a slant curve.
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Corollary 3.1. Let N̄ be a (LCS)3 manifold and ζ be a slant curve on N̄ . If the ge-

odesic curvature κ of the curve ζ is non-zero constant, then the geodesic torsion of ζ is

τ =

∣∣∣∣(ε3α+ ε1
cosθν√
ε1+cos2 θ

)∣∣∣∣ and ζ is a pseudo-helix on N̄ .

Corollary 3.2. Let N̄ be a (LCS)3 manifold and ζ be a slant curve on N̄ . If the geodesic

curvature κ of the curve ζ is not constant and the geodesic torsion of ζ is τ = 0 then ζ is a

plane curve on N̄ and function ν satisfies the equation

ν =

∫
(c1 + c2ν)κ

2ds, (3.32)

where c1 =
ε3√

ε1+cos2 θ
and c2 =

ε1cosθ
α(ε1+cos2 θ)

.

Theorem 3.3. Let N̄ be a (LCS)3 manifold and ζ is a Frenet curve on N̄ . ζ is a spacelike

Legendre curve(ρ = η(ζ ′) = 0) in this manifold if and only if the Frenet elements {t, n, b, κ, τ}

of ζ are as follows

t = e1 = ζ ′,

n = e2 = ε2φζ
′,

b = e3 = −ε3ξ, (3.33)

κ =
√
ν2 + α2,

τ =

∣∣∣∣∣∣ε3α−

√[(
ν

ε2κ

)′]2
+ α2

[
κ′

κ2

]2∣∣∣∣∣∣ .
Proof. Let the curve ζ be a Legendre curve in (LCS)3 manifold N̄ . If we take

account the condition ρ = η(ζ ′) = 0 in the equations (3.12), (3.24) and (3.28) we find (3.33).

If the equations in (3.33) hold, from the definition of Legendre curves it is obvious that the

curve ζ is a Legendre curve on N̄ .

Corollary 3.3. Let the curve ζ is a Legendre curve in (LCS)3 manifold N̄ . If the geodesic

curvature κ of the curve ζ is non-zero constant, then the geodesic torsion of ζ is τ = 0 and

ζ is a plane curve on N̄ .

4. Examples

Let N̄ be the 3-dimensional manifold given

N̄ =
{
(x, y, z) ∈ ℜ3, z ̸= 0

}
, (4.34)
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where (x,y,z) denote the standart co-ordinates in ℜ3. Then

E1 = ez
(
x
∂

∂x
+ y

∂

∂y

)
, E2 = ez

∂

∂y
,E3 =

∂

∂z
(4.35)

are linearly independent of each point of N̄ . Let g be the Lorentzian metric tensor defined

by

ḡ(E1, E1) = ḡ(E2, E2) = 1, ḡ(E3, E3) = −1, (4.36)

ḡ(Ei, Ej) = 0, i ̸= j,

for i, j = 1, 2, 3[2]. Let η be the 1-form defined by η(Z) = ḡ(Z,E3) for any Z ∈ Γ(TN̄). Let

φ be the (1,1)-tensor field defined by

φE1 = E1, φE2 = E2, φE3 = 0. (4.37)

Then using the condition of the linearity of φ and ḡ, we obtain η(E3) = −1,

φ2Z = Z + η(Z)E3, (4.38)

ḡ(φZ,φW ) = ḡ(Z,W ) + η(Z)η(W ),

for all Z,W ∈ Γ(TN̄). Thus for ξ = E3, (φ, ξ, η, ḡ) defines a Lorentzian paracontact structure

on N̄ .

Now, let ∇ be the Levi-Civita connection with respect to the Lorentzian metric ḡ. Then

we obtain

[E1, E2] = −ezE2, [E1, E3] = −E1, [E2, E3] = −E2. (4.39)

If we use the Koszul formulae for the Lorentzian metric tensor ḡ, we can easily calculate the

covariant derivations as follows:

∇E1E1 = −E3, ∇E2E1 = ezE2, ∇E1E3 = −E1,

∇E2E3 = −E2, ∇E2E2 = −ezE1 − E3, (4.40)

∇E1E2 = ∇E3E1 = ∇E3E2 = ∇E3E3 = 0.

From the about represantations, one can easily see that (φ, ξ, η, ḡ) is a (LCS)3 structure on

N̄ , that is, N̄ is an (LCS)3-manifold with α = −1 and ρ = 0.
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Example 4.1. Let β be a spacelike Legendre curve in the (LCS)3 manifold N̄ and defined

as

β : I → N̄

s → β(s) =
(
s2, s2, ln2

)
,

where the curve β parametrized by the arc length parameter t. If we differentiate β(t) and

consider (3.12) we find

e1 = β′(t), (4.41)

e2 =
1√
2
E1 +

1√
2
E2, (4.42)

e3 = ε2E3 . (4.43)

If we consider the equations (3.13), (3.14), (3.16), (3.24) and (3.28) we can write

ρ = 0, µ = −ε2α, ν = − 1√
2
, (4.44)

κ =

√
α2 +

1

2
=

√
3

2
, τ = |α| = 1.

From the above equations we see that the curve β is a Legendre helix curve in N̄ .

Example 4.2. Let υ be a spacelike Legendre curve in the (LCS)3 manifold N̄ and defined

as

υ : I → N̄

s → υ(s) = (coss, sins, 1) ,

where the curve υ parametrized by the arc length parameter t. If we differentiate υ(t) and

consider (3.12) we find

e1 = υ′(t), (4.45)

e2 = ε2

(
−sin(

t

e
)E1 + cos(

t

e
)E2

)
, (4.46)

e3 = ε2∂3. (4.47)

If we consider the equations (3.13), (3.14), (3.16), (3.24) and (3.28) we can write

ρ = 0, µ = −ε2α, ν = 0, (4.48)

κ = τ = |α| .

So, the curve υ(s) is a Legendre helix curve in N̄ .
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