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ON THE TRINAJSTIC INDEX OF SOME ZERO DIVISOR GRAPHS

ALPARSLAN CENIKLI ID AND ARIF GÜRSOY ID ∗

Abstract. In this paper, the Trinajstic index, a novel topological index, is analyzed

within the framework of basic concepts in Graph Theory, particularly focusing on Zero-

Divisor Graphs, excluding trees. The Trinajstic index, initially developed in the context

of Chemical Graph Theory, investigates chemical structures based on a distance-balance

concept. After constructing a pseudocode to calculate the Trinajstic index, the relevant

algorithms were implemented using MATLAB. Subsequently, MATLAB codes for generating

graphs and calculating the Trinajstic index were combined to compute the index for various

graphs. Formulas relating to prime-based Zero-Divisor Graphs were derived and proven.

Keywords: Graph theory, Chemical graph theory, Topological index, Trinajstic index,

Zero-divisor graphs

2020 Mathematics Subject Classification: 05C09, 05C25.

1. Introduction

Graph theory plays a crucial role in many areas of science. Nowadays, graph theory is

particularly essential in chemistry for representing chemical molecules as graphs, enabling

deeper analysis and a better understanding of their structures. This necessitated the devel-

opment of chemical graph theory. In chemical graph theory, numerous topological indices

have emerged, including the Wiener index, Szeged index, Harary index, and others. Some

topological indices are computed using the degrees of a graph, while others are determined

based on the distances between its vertices. Additionally, various features can be explored to

understand how different topological indices are calculated and what aspects they are related

to. In 2022, the Trinajstic index, which will briefly be referred to as NT , was introduced

by Boris Furtula [11]. He provided information on this index in the context of complete

graphs, cycle graphs, path graphs, star graphs, and trees. This topological index is based on

distances between vertices to determine whether the structure is balanced. It is particularly

relevant in chemical graph theory for understanding the balance of chemical structures.
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2. Preliminaries

The zero divisor graph is distinct from other types of graphs because of its construction.

Zero divisor graph was studied on by I. Beck [4] and its construction is related to commutative

rings that is related to algebraic combinatorics. Beck’s definition for the zero divisor graph

is that graph consists of vertices in R. If any two vertices of graph yields xy = 0, graph is

zero divisor graph.

The Trinajstic index was defined for connected, undirected and simple graph G as follows:

NT (G) =
∑

u,v∈V (G)

(nu − nv)
2 (2.1)

where nu is number of vertices closer to u than v, nv is number of vertices closer to v than

u.

This topological index is distance-based, and can also be referred to as distance-balance-

based topological index to understand of graph structure.

3. Trinajstic topological index of Γ(Zn)

Zero divisor graph of Z is popular for especially in chemical graph theory. For that reason

the Trinajstic index could be also considered on zero divisor graphs for n = ρ2, n = ρ3,

n = ρq, n = ρ2q and n = ρqr. In this section, we will focus on Trinajstic index of Γ(Zn).

Theorem 3.1. Let ρ be a prime number and be n = ρ3. Trinajstic index of Γ(Zρ3) is as

follows:

NT
(
Γ
(
Zρ3

))
= ρ(ρ2 − ρ− 1)

2
(ρ− 1)2. (3.2)

Proof. Vertex set of zero divisor graph could be partitioned as V (Γ(Zρ3)) = V1 ∪ V2 and

for i, j ∈ 1, 2 there are two subsets of
(
Γ
(
Zρ3

))
such that

V1 = {ρα | α = 1, 2, . . . , ρ2 –1, ρ ∤ α},
V2 = {ρ2α | α = 1, 2, . . . , ρ –1} where V1 ∩ V2 = ∅.

In addition property of zero divisor graph with n = ρ3, | V1 | = ρ(ρ − 1) and | V2 | = ρ − 1

for all u ∈ V1 and v ∈ V2, nu and nv as follow:

nu = | V2 | and
nv = 1. Then,

NT
(
Γ
(
Zρ3

))
=

∑
{u,v}∈V (Γ(Zρ3))

(nu − nv)
2

=| V1 || V2 |( |V1| − 1)2

=ρ(ρ2 − ρ− 1)
2
(ρ− 1)2.

□

The results for Γ(Zρ3) for prime ρ < 20 are listed in Table 3.1.
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Table 3.1. Results of Γ(Zρ3)

ρ n = ρ3 NT
2 8 2
3 27 300
5 125 28880
7 343 423612

11 1331 13069100
13 2197 44974800
17 4913 319615232
19 6859 715825836

Theorem 3.2. Let ρ and q be prime numbers and n = ρq. Trinajstic index of Γ(Zρq) is as

follows:

NT (Γ (Zρq)) = (ρ− 1)(q − 1) (ρ− q)2 (3.3)

Proof. Vertex set of zero divisor graph could be partitioned as V (Γ(Zρq)) = V1 ∪ V2 and

for i, j ∈ 1, 2 there are two subsets of (Γ (Zρq)) such that

V1 = {ρα | α = 1, 2, . . . , q − 1},
V2 = {qα | α = 1, 2, . . . , ρ− 1} where V1 ∩ V2 = ∅.
Since | V1 | = q− 1 and | V2 | = ρ− 1, Γ(Zρq) has (ρ − 1)(q − 1) vertices. For set of sets

pair V1, V2, we are able to construct graph as follow:

Figure 1. Structure of Γ (Zρq)

for all u ∈ V1 and v ∈ V2, nu and nv are as follow: nu = | V1 | and nv = | V2 |. Therefore

(nu − nv)
2 = (| V1 | − | V2 |)2. Now, we can calculate NT as

NT (Γ (Zρq)) =
∑

{u,v}∈V (Γ(Zρq))

(nu − nv)
2

=| V1 || V2 |(| V2 | − | V1 |)2

=(ρ − 1)(q − 1)(ρ − q)2.

□

Results pertaining to Γ(Zρq) for primes ρ < 50 and q < 50 are summarized in Table 5.2.

Theorem 3.3. Let ρ and q be distinct prime numbers and n = ρ2q. Trinajstic index of

Γ(Zρ2q) is as follows:

NT
(
Γ
(
Zρ2q

))
=ρ (ρ− 1)

(
ρ5q − ρ5 − 2ρ4q2 + ρ4q + ρ4 + ρ3q3 + 13ρ3q2 − 19ρ3q+

6ρ3 − 3ρ2q3 − 24ρ2q2 + 36ρ2q − 14ρ2 + 4ρq3 + 6ρq2 − 3ρq + ρ− q2 − 5q + 2
)

(3.4)
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Proof. Since ρ, ρ2 and q are divisors of n = ρ2q, Vertex set of zero divisor graph could be

partitioned as V (Γ(Zn)) = V1 ∪ V2 ∪ V3 ∪ V4, i ̸= j and for i, j ∈ 1, . . . , 4 there

are four subsets of
(
Γ
(
Zρ2q

))
such that

V1 = {ρα | α = 1, 2, . . . , ρq − 1, ρ ∤ α, q ∤ α},
V2 = {qα | α = 1, 2, . . . , ρ2 − 1, ρ ∤ α},
V3 = {ρ2α | α = 1, 2, . . . , q − 1} and

V4 = {ρqα | α = 1, 2, . . . , ρ − 1}.
Size of each subsets are | V1 | = (ρ − 1)(q − 1), | V2 | = ρ(ρ − 1), | V3 | =

(q − 1), | V4 | = (ρ − 1), respectively. Graph was constructed by using V1, V2, V3 and

V4 is below:

Figure 2. Structure of Γ
(
Zρ2q

)

In order to calculate Trinajstic index of Γ
(
Zρ2q

)
we must investigate these cases below:

Case 1: For the pair of sets V1 and V2 with u ∈ V1 and v ∈ V2, nu and nv are determined

as follows:

nu = | V4 |+ | V1 |,
nv = | V3 |+ | V2 |.
Thus, (nu − nv)

2 = (| V4 |+ | V1 | − (| V3 |+ | V2 |))2.
Case 2: For the pair of sets V1 and V3 with u ∈ V1 and v ∈ V3, nu and nv are as follows:

nu = 1,

nv = | V2 |+ 1.

Hence, (nu − nv)
2 = (1− |V 2|+ 1)2 = |V 2|

2.

Case 3: For the pair of sets V1 and V4 with u ∈ V1 and v ∈ V4, nu and nv are described

as follows:

nu = 1,

nv = | V1 |+ | V2 |+ | V3 |.
Thus, (nu − nv)

2 = (| V1 |+ | V2 |+ | V3 | − 1)2.

Case 4: For the pair of sets V2 and V3 with u ∈ V2 and v ∈ V3, nu and nv values can be

expressed as follows::

nu = | V3 |,
nv = | V1 |+ | V2 |+ | V4 |.
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Therefore, (nu − nv)
2 = (| V1 |+ | V2 |+ | V4 | − | V3 |)2.

Case 5: For the pair of sets V2 and V4 with u ∈ V2 and v ∈ V4, nu and nv are as follows:

nu = 1,

nv = | V1 |+ | V4 |.
Hence, (nu − nv)

2 = (| V1 |+ | V4 | − 1)2.

Case 6: For the pair of sets V3 and V4 with u ∈ V3 and v ∈ V4, nu and nv are described

as follows:

nu = 1 + | V2 |,
nv = | V1 |+ | V3 |+ 1–1 = | V1 |+ | V3 |.
Thus, (nu − nv)

2 = (| V1 |+ | V4 | − 1)2.

In this way, Trinajstic index of Γ(Z(ρ
2 q) ) is

NT
(
Γ
(
Zρ2q

))
=

∑
{u,v}∈V (Γ(Zρ2q))

(nu − nv)
2

=| V1 || V3 ||V 2|
2 + | V1 || V4 |(| V1 |+ | V2 |+ | V3 | − 1)2+

| V2 || V3 |(| V1 |+ | V2 |+ | V4 | − | V3 |)2+

| V2 || V4 |(| V1 |+ | V4 | − 1)2 + | V3 || V4 |(| V1 |+ | V4 | − 1)2

Then this equation will be

NT
(
Γ
(
Zρ2q

))
= ρ (ρ− 1)

(
ρ5q − ρ5 − 2ρ4q2 + ρ4q + ρ4 + ρ3q3 + 13ρ3q2 − 19ρ3q + 6ρ3−

3ρ2q3 − 24ρ2q2 + 36ρ2q − 14ρ2 + 4ρq3 + 6ρq2 − 3ρq + ρ− q2 − 5q + 2
)
.

□

Table 5.3 provides the results for Γ(Zρ2q) for primes ρ < 20 and q < 20.

Theorem 3.4. Let ρ, q and r be distinct prime numbers and n = ρqr. Trinajstic index of

Γ(Zρqr) is as follows:

NT (Γ(Zρqr )) =(ρ − 1)2 (r − 1) (ρq − 2q − ρ + qr + 1)2+

(q − 1)2 (r − 1) (ρq − q − 2ρ + ρr + 1)2+

(ρ − 1)2 (q − 1) (ρr − 2r − ρ + qr + 1)2+

(q − 1) (r − 1)2 (ρq − r − 2ρ + ρr + 1)2+

(ρ − 1) (q − 1)2 (ρr − 2r − q + qr + 1)2+

(ρ − 1) (r − 1)2 (ρq − r − 2q + qr + 1)2+

(ρ − 1)(q − 1)(r − 1) (ρq − q − 3r − ρ + ρr + qr + 2)2+

(ρ − 1)(q − 1)(r − 1) (ρq − 3q − r − ρ + ρr + qr + 2)2+

(ρ − 1)(q − 1)(r − 1) (ρq − q − r − 3ρ + ρr + qr + 2)2+

r2 (ρ − q)2 (ρ − 1)(q − 1) + q2 (ρ − r)2 (ρ − 1)(r − 1)+

ρ2 (q − r)2 (q − 1)(r − 1) + (ρ − r)2 (ρ − 1) (q − 1)2 (q − 2)2 (r − 1)+

(q − r)2 (ρ − 1)2 (ρ − 2)2 (q − 1)(r − 1)+

(ρ − q)2 (ρ − 1)(q − 1) (r − 1)2 (r − 2)2.
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Proof. Since ρ, q, r, ρq, ρr and qr are divisors of n = ρqr, vertex set of zero divisor graph

could be partitioned as V (Γ(Zn)) = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6, i ̸= j and for i, j ∈ 1, 2, ..., 6.

There are six subsets of V (Γ(Zρqr)) such that

V1 = {ρα|α = 1, 2, ..., qr − 1, q ∤ α, r ∤ α},
V2 = {qα|α = 1, 2, ..., ρr − 1, ρ ∤ α, r ∤ α},
V3 = {rα|α = 1, 2, ..., ρq − 1, ρ ∤ α, q ∤ α},
V4 = {ρqα|α = 1, 2, ..., r − 1},
V5 = {ρrα|α = 1, 2, ..., q − 1},
V6 = {qrα|α = 1, 2, ..., ρ− 1}.
Norm of each subsets are |V1| = (q− 1)(r− 1), |V2| = (q− 1)(r− 1), |V3| = (ρ− 1)(rq− 1),

|V4| = (r − 1), |V5| = (q − 1) and |V6| = (ρ− 1), respectively.

Graph was constructed by using V1, V2, V3, V4, V5, and V6 is below:

Figure 3. Structure of Γ (Zρqr)

In order to calculate Trinajstic index of Γ (Zρqr) we must investigate these cases below:

Case 1: Considering the pair of sets V1 and V2, where u ∈ V1 and v ∈ V2, the values of

nu and nv are described as follows:

nu = | V6 |+ | V1 |,
nv = | V5 |+ | V2 |.
Thus, (nu − nv)

2 = (| V5 |+ | V2 | − (| V6 |+ | V1 |))2.
Case 2: Considering the pair of sets V1 and V3, where u ∈ V1 and v ∈ V3, the values of

nu and nv are described as follows:

nu = | V6 |+ | V1 |,
nv = | V4 |+ | V3 |.
Hence, (nu − nv)

2 = (| V6 |+ | V1 | − (| V4 |+ | V3 |))2.
Case 3: Considering the pair of sets V1 and V4, where u ∈ V1 and v ∈ V4, the values of

nu and nv are described as follows:

nu = 0,

nv = | V3 |+ | V5 |+ | V2 |.
Therefore, (nu − nv)

2 = (| V3 |+ | V5 | + | V2 |)2.
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Case 4: Considering the pair of sets V1 and V5, where u ∈ V1 and v ∈ V5, the values of

nu and nv are described as follows:

nu = 0,

nv = | V2 |+ | V3 |+ | V4 |.
Hence, (nu − nv)

2 = (| V2 |+ | V3 | + | V4 |)2.
Case 5: Considering the pair of sets V1 and V6, where u ∈ V1 and v ∈ V6, the values of

nu and nv are described as follows:

nu = | V6 |,
nv = | V2 |+ | V3 |+ | V4 |+ | V5 |+ | V1 |.
Thus (nu − nv)

2 = (| V2 |+ | V3 | + | V4 | + | V5 |+ | V1 | − | V6 | )2.
Case 6: Considering the pair of sets V2 and V3, where u ∈ V2 and v ∈ V3, the values of

nu and nv are described as follows:

nu = | V5 |+ | V2 |,
nv = | V4 |+ | V3 |.
Therefore, (nu − nv)

2 = (| V5 |+ | V2 | − (| V4 |+ | V3 |))2.
Case 7: Considering the pair of sets V2 and V4, where u ∈ V2 and v ∈ V4, the values of

nu and nv are described as follows:

nu = 0,

nv = | V3 |+ | V1 |+ | V6 |.
Hence, (nu − nv)

2 = (| V3 |+ | V1 | + | V6 |)2.
Case 8: Considering the pair of sets V2 and V5, where u ∈ V2 and v ∈ V5, the values of

nu and nv are described as follows:

nu = | V5 |,
nv = | V1 |+ | V2 |+ | V3 |+ | V4 |+ | V6 |.
So, (nu − nv)

2 = (| V1 |+ | V2 | + | V3 | + | V4 |+ | V6 | − | V5 | )2.
Case 9: Considering the pair of sets V2 and V6, where u ∈ V2 and v ∈ V6, the values of

nu and nv are described as follows:

nu = 0,

nv = | V1 |+ | V3 |+ | V4 |.
Accordingly, (nu − nv)

2 = (| V1 | + | V3 | + | V4 |)2.
Case 10: Considering the pair of sets V3 and V4, where u ∈ V3 and v ∈ V4, the values of

nu and nv are described as follows:

nu = | V4 |,
nv = | V1 |+ | V2 |+ | V3 |+ | V5 |+ | V6 |.
Thus, (nu − nv)

2 = (| V1 |+ | V2 | + | V3 | + | V6 |+ | V6 | − | V4 | )2.
Case 11: Considering the pair of sets V3 and V5, where u ∈ V3 and v ∈ V5, the values of

nu and nv are described as follows:

nu = 0,

nv = | V1 |+ | V2 |+ | V6 |.
Hence, (nu − nv)

2 = (| V1 |+ | V2 | + | V6 |)2.
Case 12: Considering the pair of sets V3 and V6, where u ∈ V3 and v ∈ V6, the values of

nu and nv are described as follows:

nu = 0,
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nv = | V1 |+ | V2 |+ | V5 |.
So, (nu − nv)

2 = (| V1 |+ | V2 | + | V5 |)2.
Case 13: Considering the pair of sets V4 and V5, where u ∈ V4 and v ∈ V5, the values of

nu and nv are described as follows:

nu = | V3 |+ | V5 |,
nv = | V2 |+ | V4 |.
Thus (nu − nv)

2 = (| V3 |+ | V5 | − (| V2 |+ | V4 |))2.
Case 14: Considering the pair of sets V4 and V6, where u ∈ V4 and v ∈ V6, the values of

nu and nv are described as follows:

nu = | V3 |+ | V6 |,
nv = | V1 |+ | V4 |.
Therefore, (nu − nv)

2 = (| V3 |+ | V6 | − (| V1 |+ | V4 |))2.
Case 15: Considering the pair of sets V5 and V6, where u ∈ V5 and v ∈ V6, the values of

nu and nv are described as follows:

nu = | V2 |+ | V6 |,
nv = | V1 |+ | V5 |.
Hence, (nu − nv)

2 = (| V2 |+ | V6 | − (| V1 |+ | V5 |))2.
In this way, Trinajstic index of Γ (Zρqr) is

NT (Γ (Zρqr)) =
∑

{u,v}∈ V (Γ(Zρqr))

(nu − nv)
2

=| V1 || V2 |(| V5 |+ | V2 | − (| V6 |+ | V1 |))2 +

| V1 || V3 |(| V1 |+ | V6 | − (| V3 |+ | V4 |))2 +

| V1 || V4 |(| V2 |+ | V3 | + | V5 |)2 + | V1 || V5 |(| V2 |+ | V3 | + | V4 |)2 +

| V1 || V6 |(| V1 |+ | V2 | + | V3 | + | V4 | + | V5 | − | V6 |)2+

| V2 || V3 |(| V2 |+ | V5 | − (| V3 |+ | V4 |))2+

| V2 || V4 |(| V1 |+ | V3 | + | V6 |)2+

| V2 || V5 |(| V1 |+ | V2 | + | V3 | + | V4 | + | V6 | − | V5 |)2 +

| V2 || V6 |(| V1 | + | V3 | + | V4 |)2+

| V3 || V4 |(| V1 |+ | V2 | + | V3 | + | V5 | + | V6 | − | V4 |)2+

| V3 || V5 |(| V1 |+ | V2 | + | V6 |)2 +

| V3 || V3 |(| V1 |+ | V2 | + | V5 |)2+

| V4 || V5 |(| V2 |+ | V4 | − (| V3 |+ | V5 |))2 +

| V4 || V6 |(| V1 |+ | V4 | − (| V3 |+ | V6 |))2+

| V5 || V6 |(| V1 |+ | V5 | − (| V2 |+ | V6 |))2

(3.5)
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Then Equation 3.5 will be

NT (Γ (Zρqr)) = (ρ− 1)2 (r − 1) (ρq − 2q − ρ+ qr + 1)2+

(q − 1)2 (r − 1) (ρq − q − 2ρ+ ρr + 1)2+

(ρ− 1)2 (q − 1) (ρr − 2r − ρ+ qr + 1)2+

(q − 1) (r − 1)2 (ρq − r − 2ρ+ ρr + 1)2+

(ρ− 1) (q − 1)2 (ρr − 2r − q + qr + 1)2+

(ρ− 1) (r − 1)2 (ρq − r − 2q + qr + 1)2+

(ρ− 1) (q − 1) (r − 1) (ρq − q − 3r − ρ+ ρr + qr + 2)2+

(ρ− 1) (q − 1) (r − 1) (ρq − 3q − r − ρ+ ρr + qr + 2)2+

(ρ− 1) (q − 1) (r − 1) (ρq − q − r − 3ρ+ ρr + qr + 2)2+

r2 (ρ− q)2 (ρ− 1) (q − 1) + q2 (ρ− r)2 (ρ− 1) (r − 1)+

ρ2 (q − r)2 (q − 1) (r − 1) + (ρ− r)2 (ρ− 1) (q − 1)2 (q − 2)2 (r − 1)+

(q − r)2 (ρ− 1)2 (ρ− 2)2 (q − 1) (r − 1) + (ρ− q)2 (ρ− 1) (q − 1) (r − 1)2 (r − 2)2

□

Table 5.4 lists the results obtained for Γ(Zρqr) for primes ρ < 10, q < 10 and r < 10.

4. Conclusion

The Trinajstic index is a novel topological index that is one of the topological indexes to

study on chemical graph theory, especially on chemical structure. The Trinajstic index could

also be applicable on zero-divisor graphs except complete graph, star graph, path graph and

cycle graph to improve theorems related to computer science and also graph theory too.

As discussed in this paper, the Trinajstic index can be calculated analytically using prime

numbers, without computational tools.

Acknowledgments. The authors would like to thank the referee for some useful com-

ments and their helpful suggestions that have improved the quality of this paper.

5. Appendix

Table 5.2: Results of Γ(Zρq)

ρ q n = ρq NT

2 2 4 0

2 3 6 2

2 5 10 36

2 7 14 150

2 11 22 810

2 13 26 1452

2 17 34 3600

2 19 38 5202
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Table 5.2 – continued from previous page

ρ q n = ρq NT

2 23 46 9702

2 29 58 20412

2 31 62 25230

2 37 74 44100

2 41 82 60840

2 43 86 70602

2 47 94 93150

3 2 6 2

3 3 9 0

3 5 15 32

3 7 21 192

3 11 33 1280

3 13 39 2400

3 17 51 6272

3 19 57 9216

3 23 69 17600

3 29 87 37856

3 31 93 47040

3 37 111 83232

3 41 123 115520

3 43 129 134400

3 47 141 178112

5 2 10 36

5 3 15 32

5 5 25 0

5 7 35 96

5 11 55 1440

5 13 65 3072

5 17 85 9216

5 19 95 14112

5 23 115 28512

5 29 145 64512

5 31 155 81120

5 37 185 147456

5 41 205 207360

5 43 215 242592

5 47 235 324576

7 2 14 150

7 3 21 192

7 5 35 96
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Table 5.2 – continued from previous page

ρ q n = ρq NT

7 7 49 0

7 11 77 960

7 13 91 2592

7 17 119 9600

7 19 133 15552

7 23 161 33792

7 29 203 81312

7 31 217 103680

7 37 259 194400

7 41 287 277440

7 43 301 326592

7 47 329 441600

11 2 22 810

11 3 33 1280

11 5 55 1440

11 7 77 960

11 11 121 0

11 13 143 480

11 17 187 5760

11 19 209 11520

11 23 253 31680

11 29 319 90720

11 31 341 120000

11 37 407 243360

11 41 451 360000

11 43 473 430080

11 47 517 596160

13 2 26 1452

13 3 39 2400

13 5 65 3072

13 7 91 2592

13 11 143 480

13 13 169 0

13 17 221 3072

13 19 247 7776

13 23 299 26400

13 29 377 86016

13 31 403 116640

13 37 481 248832

13 41 533 376320
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Table 5.2 – continued from previous page

ρ q n = ρq NT

13 43 559 453600

13 47 611 638112

17 2 34 3600

17 3 51 6272

17 5 85 9216

17 7 119 9600

17 11 187 5760

17 13 221 3072

17 17 289 0

17 19 323 1152

17 23 391 12672

17 29 493 64512

17 31 527 94080

17 37 629 230400

17 41 697 368640

17 43 731 454272

17 47 799 662400

19 2 38 5202

19 3 57 9216

19 5 95 14112

19 7 133 15552

19 11 209 11520

19 13 247 7776

19 17 323 1152

19 19 361 0

19 23 437 6336

19 29 551 50400

19 31 589 77760

19 37 703 209952

19 41 779 348480

19 43 817 435456

19 47 893 649152

23 2 46 9702

23 3 69 17600

23 5 115 28512

23 7 161 33792

23 11 253 31680

23 13 299 26400

23 17 391 12672

23 19 437 6336
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Table 5.2 – continued from previous page

ρ q n = ρq NT

23 23 529 0

23 29 667 22176

23 31 713 42240

23 37 851 155232

23 41 943 285120

23 43 989 369600

23 47 1081 582912

29 2 58 20412

29 3 87 37856

29 5 145 64512

29 7 203 81312

29 11 319 90720

29 13 377 86016

29 17 493 64512

29 19 551 50400

29 23 667 22176

29 29 841 0

29 31 899 3360

29 37 1073 64512

29 41 1189 161280

29 43 1247 230496

29 47 1363 417312

31 2 62 25230

31 3 93 47040

31 5 155 81120

31 7 217 103680

31 11 341 120000

31 13 403 116640

31 17 527 94080

31 19 589 77760

31 23 713 42240

31 29 899 3360

31 31 961 0

31 37 1147 38880

31 41 1271 120000

31 43 1333 181440

31 47 1457 353280

37 2 74 44100

37 3 111 83232

37 5 185 147456
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Table 5.2 – continued from previous page

ρ q n = ρq NT

37 7 259 194400

37 11 407 243360

37 13 481 248832

37 17 629 230400

37 19 703 209952

37 23 851 155232

37 29 1073 64512

37 31 1147 38880

37 37 1369 0

37 41 1517 23040

37 43 1591 54432

37 47 1739 165600

41 2 82 60840

41 3 123 115520

41 5 205 207360

41 7 287 277440

41 11 451 360000

41 13 533 376320

41 17 697 368640

41 19 779 348480

41 23 943 285120

41 29 1189 161280

41 31 1271 120000

41 37 1517 23040

41 41 1681 0

41 43 1763 6720

41 47 1927 66240

43 2 86 70602

43 3 129 134400

43 5 215 242592

43 7 301 326592

43 11 473 430080

43 13 559 453600

43 17 731 454272

43 19 817 435456

43 23 989 369600

43 29 1247 230496

43 31 1333 181440

43 37 1591 54432

43 41 1763 6720
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Table 5.2 – continued from previous page

ρ q n = ρq NT

43 43 1849 0

43 47 2021 30912

47 2 94 93150

47 3 141 178112

47 5 235 324576

47 7 329 441600

47 11 517 596160

47 13 611 638112

47 17 799 662400

47 19 893 649152

47 23 1081 582912

47 29 1363 417312

47 31 1457 353280

47 37 1739 165600

47 41 1927 66240

47 43 2021 30912

47 47 2209 0
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Table 5.3: Results of Γ(Zρ2q)

ρ q ρ2 n = ρ2q NT

2 2 4 8 2

2 3 4 12 116

2 5 4 20 600

2 7 4 28 1836

2 11 4 44 8100

2 13 4 52 13896

2 17 4 68 32736

2 19 4 76 46548

3 2 9 18 1062

3 3 9 27 300

3 5 9 45 10404

3 7 9 63 26112

3 11 9 99 95832

3 13 9 117 156756

3 17 9 153 348012

3 19 9 171 485256

5 2 25 50 43860

5 3 25 75 95960

5 5 25 125 28880

5 7 25 175 561960

5 11 25 275 1843320

5 13 25 325 2957760

5 17 25 425 6470160

5 19 25 475 9002520

7 2 49 98 491946

7 3 49 147 966336

7 5 49 245 2107140

7 7 49 343 423612

7 11 49 539 11130000

7 13 49 637 17509716

7 17 49 833 38036796

7 19 49 931 53087328

11 2 121 242 12997710

11 3 121 363 23982200

11 5 121 605 42850500

11 7 121 847 62037360

11 11 121 1331 13069100

11 13 121 1573 174942900

11 17 121 2057 349767660
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Table 5.3 – continued from previous page

ρ q ρ2 n = ρ2q NT

11 19 121 2299 483076440

13 2 169 338 43707612

13 3 169 507 80297256

13 5 169 845 139324224

13 7 169 1183 190351512

13 11 169 1859 320583432

13 13 169 2197 44974800

13 17 169 2873 782036112

13 19 169 3211 1058991336

17 2 289 578 305388816

17 3 289 867 563382176

17 5 289 1445 966976320

17 7 289 2023 1265474016

17 11 289 3179 1762029600

17 13 289 3757 2067512256

17 17 289 4913 319615232

17 19 289 5491 3857328288

19 2 361 722 682331382

19 3 361 1083 1263762504

19 5 361 1805 2177294436

19 7 361 2527 2838441312

19 11 361 3971 3787845624

19 13 361 4693 4268235924

19 17 361 6137 5720724972

19 19 361 6859 715825836
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Table 5.4: Results of Γ(Zρqr)

ρ q r n = ρqr NT

2 2 2 8 2

2 2 3 12 116

2 2 5 20 600

2 2 7 28 1836

2 3 2 12 116

2 3 3 18 1062

2 3 5 30 14922

2 3 7 42 48980

2 5 2 20 600

2 5 3 30 14922

2 5 5 50 43860

2 5 7 70 273278

2 7 2 28 1836

2 7 3 42 48980

2 7 5 70 273278

2 7 7 98 491946

3 2 2 12 116

3 2 3 18 1062

3 2 5 30 14922

3 2 7 42 48980

3 3 2 18 1062

3 3 3 27 300

3 3 5 45 10404

3 3 7 63 26112

3 5 2 30 14922

3 5 3 45 10404

3 5 5 75 95960

3 5 7 105 734912

3 7 2 42 48980

3 7 3 63 26112

3 7 5 105 734912

3 7 7 147 966336

5 2 2 20 600

5 2 3 30 14922

5 2 5 50 43860

5 2 7 70 273278

5 3 2 30 14922

5 3 3 45 10404

5 3 5 75 95960
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Table 5.4 – continued from previous page

ρ q r n = ρqr NT

5 3 7 105 734912

5 5 2 50 43860

5 5 3 75 95960

5 5 5 125 28880

5 5 7 175 561960

5 7 2 70 273278

5 7 3 105 734912

5 7 5 175 561960

5 7 7 245 2107140

7 2 2 28 1836

7 2 3 42 48980

7 2 5 70 273278

7 2 7 98 491946

7 3 2 42 48980

7 3 3 63 26112

7 3 5 105 734912

7 3 7 147 966336

7 5 2 70 273278

7 5 3 105 734912

7 5 5 175 561960

7 5 7 245 2107140

7 7 2 98 491946

7 7 3 147 966336

7 7 5 245 2107140

7 7 7 343 423612
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Abstract. The current study investigates the concept of pointwise hemi-slant conformal
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1. Introduction

Immersions and submersions are well known to be special tools in both differential and Rie-

mannian geometry. It is important in Riemannian geometry, particularly when the involved

manifolds have a differentiable structures. Four decades ago, B. O’Neill [22] and A. Gray

[12] separately formulated the cornerstone of the theory of Riemannian submersions, which

has experienced major advances over the past two decades. In mathematics and physics,

Riemannian submersions have been widely used, particularly in theories like Yang-Mills and

Kaluza-Klein (see [8], [35], [20], [17]).

Riemannian submersions from almost Hermitian manifolds to Riemannian manifolds were

studied in 1976 by B. Watson [34]. On the foundation of the findings from this study, B. Sahin

[26] assessed the geometry and distinctive features of anti-invariant Riemannian submersions

onto Riemannian manifolds. Afterwards, authors explored this field further, looking at slant

submersions [10], [28], semi-slant submersions [16], [23], anti-invariant submersions [3], [26]

and semi-invariant submersions [27] among other topics. Tastan, Sahin, and Yanan [33]

defined and studied hemi-slant submersions from almost Hermitian manifolds as a generalized

case of semi-invariant and semi-slant submersions.

J. W. Lee and B. Sahin [19] introduced pointwise slant submersions from almost Hermitian

manifolds to Riemannian manifolds in this addition, thus expanding the concept of slant sub-

mersions even further. They established characterizations for pointwise slant submersions in
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addition to offering examples of this kind of submersion. As a generalization of Riemannian

submersions, B. Fuglede [13] and T. Ishihara [18] presented the idea of conformal submersion

and talked about some of its geometric characteristics. As a generalization of holomorphic

submersions, conformal holomorphic submersions were studied by Gudmundsson and Wood

[15]. They determined the necessary and sufficient conditions for harmonic morphisms of

conformal holomorphic submersions. Later, conformal semi-invariant submersions [4], con-

formal slant submersions [2], conformal anti-invariant submersions [29], [24] and conformal

semi-slant submersions [1] were studied and defined by Akyol and Sahin. Conformal hemi-

slant submersions [31], [32], conformal bi-slant submersions [5] and quasi bi-slant conformal

submersions [6] have all been discussed in the context of geometric studies recently, along

with an assortment of decomposition theorems. Moreover, from almost Hermitian manifolds

to almost contact metric manifolds, the concept of pluriharmonicity was extended.

We study the geometry of pointwise hemi-slant conformal submersions by considering both

the horizontal and vertical aspects of the structural vector field ξ. The paper is organized

as follows: Our investigation’s goals can be achieved by introducing almost contact mani-

folds, such as the Sasakian manifold, which we discuss in Section 2. In the third part of

this investigation, we define pointwise hemi-slant conformal submersions and describe some

interesting results by considering the horizontal structure of the Reeb vector field ξ. A thor-

ough examination of the total geodesic and the integrability of distributions is also given in

Section 3. While in section 4, we consider vertical aspect of Reeb vector field ξ and study of

pointwise hemi-slant conformal submersions. Additionally, as the nature of the Reeb vector

field differs in Sections 3 and 4, we compared the findings of these two sections.

Note: We use the following abbreviations in this article.

Pointwise hemi-slant conformal submersion- PWHSCS
Riemannian submersion- RS
Riemannian Manifold-RM
Horizontally Conformal Submersion-HCS
Sasakian manifold-SM
Almost contact metric manifold-ACMM

2. Preliminaries

Authors find the study of RSs to be an extremely intriguing topic. We now begin with

a discussion of a few significant points and some useful results that are highly beneficial to

our research.

Definition 2.1. [34] Let (Ξ1, g1) and (Ξ2, g2) be two RMs and ᾱ be a smooth map between

(Ξ1, g1) and (Ξ2, g2) where, m1 and m2 are the dimensions of Ξ1 and Ξ2 respectively. Then

ᾱ is called horizontally weakly conformal or semi conformal at x ∈ Ξ1 if either

(i) ᾱ∗x = 0, or

(ii) ᾱ∗x maps horizontal space ℵx = (ker(ᾱ∗x))
⊥ conformally onto Tᾱ∗(Ξ2) i.e., ᾱ∗x is

surjective and there exits a number Λ(x) ̸= 0 such that

g2(ᾱ∗xβ1, ᾱ∗xβ2) = Λ(x)g(β1, β2),

for any β1, β2 ∈ ℵx.
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Above equation can be reduce as:

(ᾱ∗g2)x |ℵx×ℵx = Λ(x)g(x) |ℵx×ℵx .

A point x is a critical point of ᾱ if it fulfills (i) in the definition above. A point that

satisfies (ii) is known as a regular point. At a critical point, ᾱ∗x has rank 0, whereas at a

regular point, it has rank n and defines a submersion. The number λ(x) is called the square

dilation and its square root λ(x) =
√
Λ(x) is called the dilation of ᾱ at x which is necessarily

non-negative. A map ᾱ is considered horizontally weakly conformal or semi-conformal on Ξ1

if it is weakly conformal at all points of Ξ1. If ᾱ has no critical points, it is considered a

(horizontally) conformal submersion.

Definition 2.2. [7] Let ᾱ be a RS between two RMs. Then ᾱ is called a horizontally

conformal submersion, if there is a positive function λ such that

g1(ω1, ω̂2) =
1

λ2
g2(ᾱ∗ω1, ᾱ∗ω2), (2.1)

for any ω1, ω2 ∈ Γ(kerᾱ∗)
⊥. It is obvious that every RSs is particularly a horizontally

conformal submersion with λ = 1.

Let be a RS ᾱ : (Ξ1, g1) → (Ξ2, g2). If β1 ∈ Γ(kerᾱ∗)
⊥, then a vector field β1 on Ξ1 is

referred to as a basic vector field and ᾱ-related to Ξ2 using a vector field β1 i.e ᾱ∗(β1(q)) =

β1ᾱ(q) for q ∈ Ξ1.

According to O’Neill, the two equations of the (1, 2) tensor fields T and A are:

AE1F1 = ℵ∇ℵE1vF1 + v∇ℵE1ℵF1 , (2.2)

TE1F1 = ℵ∇vE1 vF1 + v∇vE1ℵF1 , (2.3)

for any E1, F1 ∈ Γ(TΞ1) and ∇ is a Levi-Civita connection of g1. From above two equations

of O’Neill, we can deduce that

∇ω1ω2 = Tω1ω2 + v∇ω1ω2 (2.4)

∇ω1β1 = Tω1β1 + ℵ∇ω1β1 (2.5)

∇β1ω1 = Aβ1ω1 + v1∇β1ω1 (2.6)

∇β1β2 = ℵ∇β1β2 +Aβ1β2 (2.7)

for any vector fields ω1, ω2 ∈ Γ(kerᾱ∗) and β1, β2 ∈ Γ(kerᾱ∗)
⊥ [11].

We note that

g(Aβ1E1, F1) = −g(E1,Aβ1F1), g(Tω2E1, F1) = −g(E1, Tω2F1),

for any vector fields E1, F1 ∈ Γ(TΞ1). In the unique scenario where ᾱ represents a HCS, we
possess:

Proposition 2.1. [14] Let ᾱ : (Ξ1, g1) → (Ξ2, g2) be a horizontally conformal submersion

with dilation λ and β1, β2 be the horizontal vectors, then

Aβ1β2 =
1

2
{v [β1 , β2 ]− λ2 g(β1 , β2 )gradv (

1

λ2
)} (2.8)

measures the obstruction integrability of the horizontal distribution.
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The second fundamental form of smooth map ᾱ is provided by the formula

(∇ᾱ∗)(ω1, ω2) = ∇ᾱ
ω1
ᾱ∗ω2 − ᾱ∗∇ω1ω2, (2.9)

and the map be totally geodesic if (∇ᾱ∗)(ω1, ω2) = 0 for all ω1, ω2 ∈ Γ(TΞ1) where ∇ and

∇ᾱ are Levi-Civita and pullback connections.

Lemma 2.1. Let ᾱ : Ξ1 → Ξ2 be a HCS. Then, we have

(i) (∇ᾱ∗)(β1, β2) = β1(lnλ)ᾱ∗(β2) + β2(lnλ)ᾱ∗(β1)− g1(β1, β2)ᾱ∗(grad lnλ),

(ii) (∇ᾱ∗)(ω1, ω2) = −ᾱ∗(Tω1ω2),

(iii) (∇ᾱ∗)(β1, ω1) = −ᾱ∗(∇β1ω1) = −ᾱ∗(Aβ1ω1)

for any β1, β2 ∈ Γ(kerᾱ∗)
⊥ and ω1, ω2 ∈ Γ(kerᾱ∗) [34].

Let M be a (2n+ 1)-dimensional almost contact manifold with almost contact structures

(ϕ, ξ, η), where a (1, 1) tensor field ϕ, a vector field ξ and a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1, (2.10)

where I is the identity tensor and there exists a Riemannian metric g in such a way that

g(ϕω1, ϕω2) = g(ω1, ω2)− η(ω1)η(ω2), (2.11)

which can be noticed as follows:

η(ω1) = g(ω1, ξ), (2.12)

for any ω1, ω2 ∈ Γ(TM). Then (ϕ, ξ, η, g)-structure is called an almost contact metric struc-

ture. A normal contact metric structure is called a Sasakian structure, which satisfies

(∇ω1ϕ)ω2 = g(ω1, ω2)ξ − η(ω2)ω1 (2.13)

where ∇ is the Levi-Civita connection of g. For a SM, we can deduce that

∇ω1ξ = −ϕω1. (2.14)

The covariant derivative of ϕ is defined by

(∇β1ϕ)β2 = ∇β1ϕβ2 − ϕ∇β1β2, (2.15)

for all vector fields β1, β2 in M . S. A. Sepet and M. Ergut [30] defined pointwise slant

submersion as:

Definition 2.3. Let (Ξ̄1, ϕ, ξ, η, g1) be an ACMM and (Ξ̄1, ϕ, ξ, η, g1) be a RM.Let ᾱ be a

RS from Ξ1 to Ξ2. If the wirtinger angle θ(β1) between ϕβ1 and the space kerᾱ∗ is inde-

pendent of the choice of the non-zero vector field β1 ∈ Γ(kerᾱ∗)− < ξ > at each given point

q ∈ Ξ1, then ᾱ is a pointwise slant submersion. The angle θ represents a function on Ξ̄1,

known as the slant function of the pointwise slant submersion.

Now, we extended the concept of ϕ-pluriharmonicity from almost contact metric manifolds

to (Ξ1, ϕ, ξ, η, g1) which was once studied and defined by Y. Ohnita [21]. Let ᾱ be a PWHSCS
from almost contact metric manifolds to (Ξ1, ϕ, ξ, η, g1) onto a Riemannian manifold (Ξ2, g2).

Then PWHSCS is D⊥-ϕ-pluriharmonic, Dθ-ϕ-pluriharmonic, (D⊥ − Dθ)-ϕ pluriharmonic,

kerᾱ∗-ϕ-pluriharmonic, (kerᾱ∗)
⊥-ϕ-pluriharmonic and ((kerᾱ∗)

⊥−kerᾱ∗)-ϕ-pluriharmonic if

(∇ᾱ∗)(β1, β2) + (∇ᾱ∗)(ϕβ1, ϕβ2) = 0, (2.16)
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for any β1, β2 ∈ Γ(D⊥), for any β1, β2 ∈ Γ(Dθ), for any β1 ∈ Γ(D⊥), β2 ∈ Γ(Dθ), for any

β1, β2 ∈ Γ(kerᾱ∗), for any β1, β2 ∈ Γ(kerᾱ∗)
⊥ and for any β1 ∈ Γ(kerᾱ∗)

⊥, β2 ∈ Γ(kerᾱ∗).

3. Pointwise hemi-slant ξ⊥-conformal submersions

In this section, we will revisit the idea of PWHSCS with ξ ∈ Γ(kerᾱ)⊥.

Definition 3.1. Let ᾱ : (Ξ1, ϕ, ξ, η, g1) → (Ξ2, g2) be a HCS where (Ξ1, ϕ, ξ, η, g1) is an

ACMM and (Ξ2, g2) is a RM. A HCS ᾱ is called a pointwise hemi-slant conformal

submersion with ξ ∈ Γ(ker ᾱ∗)
⊥ if there exists two distributions D⊥ and Dθ such that

kerᾱ∗ = Dθ ⊕ D⊥, ϕ(D⊥) ⊆ Γ(ker ᾱ∗)
⊥ and for any given point q ∈ Ξ1 and β1 ∈ (Dθ)q,

the angle θ = θ(β1) between ϕβ1 and space (Dθ)q is independent of choice of non-zero vector

β1 ∈ (Dθ)q, where Dθ is the orthogonal complement of D⊥ in kerᾱ∗. In this case, the angle

θ can be regarded as a slant function and called pointwise hemi-slant function of submersion.

Let ᾱ be a PWHSCS from an ACMM (Ξ1, ϕ, ξ, η, g1) onto a RM (Ξ2, g2). Then, for any

ω2 ∈ Γ(kerᾱ∗), we have

ω2 = Pω2 +Qω2 (3.17)

where P and Q are the projections morphism onto D⊥ and Dθ. Now, for any ω2 ∈ Γ(kerᾱ∗),

we have

ϕω2 = δ̄ω2 + �̄�ω2 (3.18)

where δ̄ω2 ∈ Γ(kerᾱ∗) and �̄�ω2 ∈ Γ(kerᾱ∗)
⊥. From (3.17) and (3.18), we have

ϕζ1 =ϕ(Pζ1) + ϕ(Qζ1)

=δ̄(Pζ1) + �̄�(Pζ1) + δ̄(Qζ1) + �̄�(Qζ1),

for any ζ1 ∈ Γ(ker ᾱ∗). Since ϕD⊥ ⊆ Γ(ker ᾱ∗)
⊥, we have δ̄(Pζ1) = 0, we have

ϕζ1 = �̄�(Pζ1) + δ̄(Qζ1) + �̄�(Qζ1).

Now, we have the following decomposition

(kerᾱ∗)
⊥ = �̄�Dθ ⊕ �̄�D⊥ ⊕ ν, (3.19)

where ν is the orthogonal complement to �̄�Dθ ⊕ �̄�D⊥ in (kerᾱ∗)
⊥ such that ν is invariant

with respect to ϕ. Now, for any β1 ∈ Γ(kerᾱ∗)
⊥, we have

ϕβ1 = J β1 +Nβ1 (3.20)

where J β1 ∈ Γ(kerᾱ∗) and Nβ1 ∈ Γ(kerᾱ∗)
⊥.

Lemma 3.1. Let (Ξ1, ϕ, ξ, η, g1) be an ACMM and (Ξ2, g2) be a RM. If ᾱ : Ξ → Ξ2 is a

PWHSCS, then we have

−ω1 = −δ̄2ω1 +J �̄�ω1, �̄�δ̄ω1 +N �̄�ω1 = 0, −β1 = �̄�J β1 +N 2β1, η(β1)ξ = δ̄J β1 +JNβ1,

for any vector field ω1 ∈ Γ(kerᾱ∗) and β1 ∈ Γ(kerᾱ∗)
⊥.

Proof. By considering the (3.18) and (3.20), the proof of Lemma exists. □

Let us now provide some helpful outcomes, which will be applied throughout the research

paper.
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Lemma 3.2. Let ᾱ be a PWHSCS from an ACMM (Ξ1, ϕ, ξ, η, g1) onto a RM (Ξ2, g2),

then we have

δ̄2ζ2 = (− cos2θ)ζ2, (3.21)

for any vector fields ζ2 ∈ Γ(Dθ).

Lemma 3.3. Let ᾱ be a PWHSCS from an ACMM (Ξ1, ϕ, ξ, η, g1) onto a RM (Ξ2, g2),

then we have

(i) g1(δ̄ζ1, δ̄ζ2) = cos2 θ g1(ζ1, ζ2),

(ii) g1(�̄�ζ1, �̄�ζ2) = sin2 θg1(ζ1, ζ2),

for any vector fields ζ1, ζ2 ∈ Γ(Dθ).

Proof. The proof of the preceding Lemmas is identical to the proof of Theorem (2.2) of [9].

As a result, we omit the proofs. □

Lemma 3.4. Let ᾱ : Ξ1 → Ξ2 be a PWHSCS with hemi-slant function θ where, (Ξ1, ϕ, ξ, η, g1)

a SM and (Ξ2, g2) a RM, then we have

(i) Aβ1Nβ2 + v∇β1J β2 = Jℵ∇β1β2 + δ̄Aβ1β2

(ii) ℵ∇β1Nβ2 +Aβ1J β2 = Nℵ∇β1β2 + �̄�Aβ1β2 + g1(β1, β2)ξ − η(β2)β1

(iii) v∇β1 δ̄ω2 +Aβ1 �̄�ω2 = JAβ1ω2 + δ̄v∇β1ω2

(iv) Aβ1 δ̄ω2 + ℵ∇β1�̄�ω2 = NAβ1ω2 + �̄�v∇β1ω2

(v) v∇ω2J β1 + Tω2Nβ1 = δ̄Tω2β1 + Jℵ∇ω2β1 + η(β1 )ω2

(vi) Tω2J β1 + ℵ∇ω2Nβ1 = �̄�Tω2β1 +Nℵ∇ω2β1

(vii) v∇ω1 δ̄ω2 + Tω1 �̄�ω2 = δ̄v∇ω1ω2 + J Tω1ω2

(viii) Tω1 δ̄ω2 + ℵ∇ω1�̄�ω2 = NTω1ω2 + �̄�v∇ω1ω2 − g1 (ω1 , ω2 )ξ,

for any vector fields ω1, ω2 ∈ Γ(kerᾱ∗) and β1, β2 ∈ Γ(kerᾱ∗)
⊥.

Proof. Using (2.13), (2.15), and (2.7) (3.20), we obtain the first two relations (i) and (ii).

Equations (2.13), (2.15) (2.7), (2.4)-(2.7), and (3.18) (3.20 yield the expected results. □

To investigate the geometry of PWHSCS ᾱ : Ξ1 → Ξ2, we will now review several key

findings. Direct calculations might lead to the following conclusions:

(a) (∇ω1 δ̄)ω2 = v∇ω1 δ̄ω2 − δ̄v∇ω1ω2

(b) (∇ω1�̄�)ω2 = ℵ∇ω1�̄�ω2 − �̄�v∇ω1ω2

(c) (∇β1J )β2 = v∇β1J β2 − Jℵ∇β1β2

(d) (∇β1N )β2 = ℵ∇β1Nβ2 −Nℵ∇β1β2,

for any vector fields ω1, ω2 ∈ Γ(ker ᾱ∗) and β1, β2 ∈ Γ(ker ᾱ∗)
⊥.

Lemma 3.5. Let ᾱ : Ξ1 → Ξ2 be a PWHSCS with hemi-slant function θ from a SM onto

a RM, then we have

(i) (∇ω1 δ̄)ω2 = J Tω1ω2 − Tω1�̄�ω2

(ii) (∇ω1�̄�)ω2 = NTω1ω2 − Tω1 δ̄ω2 + g1(ω1, ω2)ξ

(iii) (∇β1J )β2 = δ̄Aβ1β2 −Aβ1Nβ2

(iv) (∇β1N )β2 = �̄�Aβ1β2 −Aβ1J β2 − η(β2)β1 + g1(β1, β2)ξ,

for all vector fields ω1, ω2 ∈ Γ(kerᾱ∗) and β1, β2 ∈ Γ(kerᾱ∗)
⊥.
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Proof. The results may be obtained by using the above-mentioned formulae (a)− (d), as well

as (2.15), (2.4)-(2.7). □

The tensor fields δ̄ and �̄�, if they are parallel with regard to the Levi-Civita connection

∇ of Ξ1, then we obtain

J Tω1ω2 = Tω1�̄�ω2, NTω1ω2 − g1(ω1, ω2)ξ = Tω1 δ̄ω2

for any vector fields ω1, ω2 ∈ Γ(TΞ1).

We are going to discuss about the anti-invariant distribution D⊥ and the slant distribution

Dθ, as well as their integrability and total geodesic.

Theorem 3.1. Let ᾱ be a PWHSCS from a SM (Ξ1, ϕ, ξ, η, g1) onto a RM (Ξ2, g2) such

that the structure vector field ξ is horizontal. Then the following are equivalent

(i) The anti-invariant distribution D⊥ is integrable.

(ii) 1
λ2 g2(∇ᾱ

ζ2
ᾱ∗(�̄�ζ1)−∇ᾱ

ζ1
ᾱ∗(�̄�ζ2), ᾱ∗(�̄�ω1))

= g(∇ζ1�̄�δ̄ζ2 +∇ζ2�̄�δ̄ζ1, ω1)− g(Tζ1�̄�ζ2 + Tζ2�̄�ζ1, δ̄ω1)

for any ζ1, ζ2 ∈ Γ(D⊥) and ω1 ∈ Dθ.

Proof. By using (2.11), (2.13),(3.18), (2.4) and (2.5), we can write

g1(∇ζ1ζ2, ω1) = −g1(ϕ∇ζ1 δ̄ζ2, ω1) + g1(Tζ1�̄�ζ2, δ̄ω1) + g1(ℵ∇ζ1�̄�ζ2, �̄�ω1),

for any ζ1, ζ2 ∈ Γ(D)⊥ and ω1 ∈ Γ(D)θ. Taking account the fact from (3.17), (2.13), (2.5),

and (3.18), we have

g1(∇ζ1ζ2, ω1) = −g1(∇ζ1 δ̄
2ζ2, ω1)− g1(∇ζ1�̄�δ̄ζ2, ω1) + g1(Tζ1�̄�ζ2, δ̄ω1) + g1(ℵ∇ζ1�̄�ζ2, �̄�ω1).

By using the horizontal conformality of ᾱ and changing the role of ζ1, ζ2 and from (2.9) with

Lemma 2.1, Lemma 3.2, we finally get

sin2 θg1([ζ1, ζ2], ω1) =g1(Tζ1�̄�ζ2, δ̄ω1) + g1(Tζ2�̄�ζ1, δ̄ω1)− g1(∇ζ1�̄�δ̄ζ2, ω1)− g1(∇ζ2�̄�δ̄ζ1, ω1)

+
1

λ2
g2(∇ᾱ

ζ2(�̄�ζ1), ᾱ∗(�̄�ω1))−
1

λ2
g2(∇ᾱ

ζ1(�̄�ζ2), ᾱ∗(�̄�ω1)).

This completes the proof. □

Theorem 3.2. Let ᾱ : Ξ1 → Ξ2 be a PWHSCS from a SM Ξ1 onto a RM Ξ2 such that

structure vector field ξ is horizontal. Then the following are equivalent.

(i) Slant distribution Dθ is integrable.

(ii) 1
λ2 g2(∇ᾱ

ζ1
ᾱ∗(�̄�ω1), ᾱ∗(�̄�ω2)) +

1
λ2 g2(∇ᾱ

ω2
ᾱ∗(�̄�ω1), ᾱ∗(ϕζ1)) + g1([ω1, ζ1], ω2)

= sin2θg1(ω1, ω2)− cos2θg1(∇ζ1ω1, ω2)− g1(Tζ1�̄�ω1, δ̄ω2)− g1(Tω2�̄�ω1, ϕζ1),

for any ω1, ω2 ∈ Γ(Dθ) and ζ1 ∈ Γ(D⊥).

Proof. For any ω1, ω2 ∈ Γ(D)θ and ζ1 ∈ Γ(D)⊥ with taking account the fact from (2.11),

(2.13) and (2.15), we get

g1([ω1, ω2], ζ1) = −g1([ω1, ζ1], ω2)− g1(∇ζ1ϕω1, ϕω2)− g1(∇ω2ϕω1, ϕζ1).

By using (2.4), (2.5) and (2.13), we can write

g1([ω1, ω2], ζ1) =− g1([ω1, ζ1], ω2) + g1(∇ζ1 δ̄
2ω1, ω2)− g1(Tζ1�̄�ω1, δ̄ω2)

− g1(ℵ∇ζ1�̄�ω1, �̄�ω2)− g1(Tω2 δ̄ω1, ϕζ1)− g1(ℵ∇ω2�̄�ω1, ϕζ1).
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In the light of (2.1) with Lemma 3.2, we get

g1([ω1, ω2], ζ1) =− g1([ω1, ζ1], ω2) + sin2θζ1(θ)g1(ω1, ω2)− cos2θg1(∇ζ1ω1, ω2)

− 1

λ2
g2(ᾱ∗(ℵ∇ζ1�̄�ω1), ᾱ∗(�̄�ω2))−

1

λ2
g2(ᾱ∗(ℵ∇ω2�̄�ω1), ᾱ∗(ϕζ1))

− g1(Tω2 δ̄ω1, ϕζ1)− g1(Tζ1�̄�ω1, δ̄ω2).

By using the horizontal conformality of ᾱ with Lemma 2.1 and (2.5), we finally have

g1([ω1, ω2], ζ1) =− g1([ω1, ζ1], ω2) + sin2θζ1(θ)g1(ω1, ω2)− cos2θg1(∇ζ1ω1, ω2)

− g1(Tζ1�̄�ω1, δ̄ω2)−
1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ω1), ᾱ∗(�̄�ω2))

− 1

λ2
g2(∇ᾱ

ω2
ᾱ∗(�̄�ω1), ᾱ∗(ϕζ1)) +

1

λ2
g2((∇ᾱ∗)(ω2, �̄�ω1), ᾱ∗(ϕζ1))

− g1(Tω2 δ̄ω1, ϕζ1) +
1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ω1), ᾱ∗(�̄�ω2)).

□

This is the required proof of theorem.

Theorem 3.3. Let ᾱ : (Ξ1, ϕ, ξ, η, g1) → (Ξ2, g2) be a PWHSCS from a SM Ξ1 onto a RM
Ξ2 such that structure vector field ξ is horizontal. Then the following are equivalent.

(i) Vertical distribution (ker ᾱ∗) is integrable.

(ii) 1
λ2 g2(∇ᾱ

β1
ᾱ∗(�̄�Pω1), ᾱ∗(�̄�ω2)) +

1
λ2 g2(∇ᾱ

β1
ᾱ∗(�̄�Qω1), ᾱ∗(�̄�ω2))

= cos2θg1(∇β1Qω1, ω2)−sin2θβ1(θ)g1(Qω1, ω2)+g1([ω1, β1], ω2)−g1(Aβ1 δ̄Pω1,Nβ1)

−g1(v∇β1 δ̄Pω1 ,J β1 )+g1 (Aβ1 δ̄Pω1 , δ̄ω2 )−g1 (∇β1 �̄�δ̄Qω1 , ω2 )+g1 (Aβ1 �̄�Qω1 , δ̄ω2 )

+ g1 (Tω2 δ̄ω1 ,Nβ1 ) + g1 (v∇ω2 δ̄ω1 ,J β1 ) + g1 (Tω2 δ̄ω1 ,J β1 ) + g1 (ℵ∇ω2 �̄�ω1 ,Nβ1 )

+ g1 (β1 , �̄�ω2 )g1 (�̄�Pω1 , grad lnλ) + g1 (�̄�Pω1 , �̄�ω2 )g1 (β1 , grad lnλ)

− g1 (β1 , �̄�Pω1 )g1 (�̄�ω2 , grad lnλ) + g1 (β1 , �̄�ω2 )g1 (�̄�Qω1 , grad lnλ)

+ g1 (�̄�Qω1 , �̄�ω2 )g1 (β1 , grad lnλ)− g1 (β1 , �̄�Qω1 )g1 (�̄�ω2 , grad lnλ),

for any ω1, ω2 ∈ Γ(ker ᾱ∗) and β1 ∈ Γ(ker ᾱ∗)
⊥.

Proof. By using (2.11), (2.13), (2.15) and (3.17), we have

g1([ω1, ω2], β1) = −g1([ω1, β1], ω2)− g1(∇β1ϕω1, ϕω2) + g1(∇ω2ϕω1, ϕβ1),

for any ω1, ω2 ∈ Γ(ker ᾱ∗) and β1 ∈ Γ(ker ᾱ∗)
⊥. In the light of (2.4)-(2.7) and (2.15), we can

write

g1([ω1, ω2], β1) =− g1(Tω2 δ̄ω1,Nβ1)− g1(v∇ω2 δ̄ω1 ,J β1 )− g1 (Tω2 �̄�ω1 ,J β1 )

− g1([ω1, β1], ω2) + g1(Aβ1 δ̄Pω1,Nβ1) + g1(v∇β1 δ̄Pω1 ,J β1 )

− g1(Aβ1�̄�Pω1, δ̄ω2)− g1(ℵ∇β1�̄�Pω1, �̄�ω2) + g1(∇β1ϕδ̄Qω1, ω2)

− g1((∇β1ϕ)δ̄Qω1, ω2)− g1(Aβ1�̄�Qω1, δ̄ω2)− g1(ℵ∇β1�̄�Qω1, �̄�ω2)

− g1(ℵ∇ω2�̄�ω1,Nβ1).
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By using Lemma 3.2 with (2.1), we get

g1([ω1, ω2], β1) =− g1(Tω2 δ̄ω1,Nβ1)− g1(v∇ω2 δ̄ω1 ,J β1 )− g1 (Tω2 δ̄ω1 ,J β1 )

+ sin2θβ1(θ)g1(Qω1, ω2)− cos2θg1(∇β1Qω1, ω2) + g1(∇β1�̄�δ̄Qω1, ω2)

− g1([ω1, β1], ω2) + g1(Aβ1 δ̄Pω1,Nβ1) + g1(v∇β1 δ̄Pω1 ,J β1 )

− 1

λ2
g2(ᾱ∗(ℵ∇β1�̄�Pω1), ᾱ∗(�̄�ω2))−

1

λ2
g2(ᾱ∗(ℵ∇β1�̄�Qω1), ᾱ∗(�̄�ω2))

− g1(Aβ1�̄�Qω1, δ̄ω2)− g1(ℵ∇ω2�̄�ω1,Nβ1)− g1(Aβ1�̄�Pω1, δ̄ω2).

□

By using the horizontal conformality of ᾱ from Lemma 2.1 and with (2.9), we finally

deduce that

g1([ω1, ω2], β1) =− g1([ω1, β1], ω2) + g1(Aβ1 δ̄Pω1,Nβ1) + g1(v∇β1 δ̄Pω1 ,J β1 )

+ sin2θβ1(θ)g1(Qω1, ω2)− cos2θg1(∇β1Qω1, ω2) + g1(∇β1�̄�δ̄Qω1, ω2)

− g1(Tω2 δ̄ω1,Nβ1)− g1(v∇ω2 δ̄ω1 ,J β1 )− g1 (Tω2 δ̄ω1 ,J β1 )

− g1(β1, �̄�ω2)g1(�̄�Pω1, grad lnλ)− g1(�̄�Pω1, �̄�ω2)g1(β1, grad lnλ)

− g1(β1, �̄�Pω1)g1(�̄�ω2, grad lnλ) +
1

λ2
g2(∇ᾱ

β1
ᾱ∗(�̄�Pω1), ᾱ∗(�̄�ω2))

− g1(β1, �̄�ω2)g1(�̄�Qω1, grad lnλ)− g1(�̄�Qω1, �̄�ω2)g1(β1, grad lnλ)

− g1(β1, �̄�Qω1)g1(�̄�ω2, grad lnλ) +
1

λ2
g2(∇ᾱ

β1
ᾱ∗(�̄�Qω1), ᾱ∗(�̄�ω2))

− g1(Aβ1�̄�Pω1, δ̄ω2)− g1(Aβ1�̄�Qω1, δ̄ω2)− g1(ℵ∇ω2�̄�ω1,Nβ1).

This completes the proof of theorem.

Theorem 3.4. Let ᾱ : (Ξ1, ϕ, ξ, η, g1) → (Ξ2, g2) be a PWHSCS where (Ξ1, ϕ, ξ, η, g1) is a

SM and (Ξ2, g2) is a RM such that structure vector field ξ is horizontal. Then the anti-

invariant distribution D⊥ defines totally geodesic foliation if and only if

1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ζ2), ᾱ∗(�̄�ω1)) =
1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ζ2), ᾱ∗(�̄�ω1))− g1(Tζ1 δ̄ζ2, �̄�)

− g1(v∇ζ1 δ̄ζ2 , δ̄ω1 )− g1 (Tζ1 �̄�ζ2 , δ̄ω1 )
(3.22)

and

1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ζ2), ᾱ∗(Nβ1)) =
1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ζ2), ᾱ∗(Nβ1))− g1(Tζ1 δ̄ζ2,Nβ1)

− g1(v∇ζ1 δ̄ζ2 ,J β1 )− g1 (Tζ1 �̄�ζ2 ,J β1 ) + g1 (δ̄ζ1 , ζ2 )η(β1 ),

(3.23)

for any ζ1, ζ2 ∈ Γ(D⊥), ω1 ∈ Γ(Dθ) and β1 ∈ Γ(ker ᾱ∗)
⊥.

Proof. By using (2.11), (2.13) and (2.15), we get

g1(∇ζ1ζ2, ω1) = g1(∇ζ1 δ̄ζ2, ϕω1) + g1(∇ζ1�̄�ζ2, ϕω1).

In the light of (2.1), (2.4), and (2.5), we can write

g1(∇ζ1ζ2, ω1) =g1(Tζ1�̄�ζ2, δ̄ω1) +
1

λ2
g2(ᾱ∗(ℵ∇ζ1�̄�ζ2), ᾱ∗(�̄�ω1))

+ g1(Tζ1 δ̄ζ2, �̄�ω1) + g1(v∇ζ1 δ̄ζ2 , δ̄ω1 ).
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By using the horizontal conformality of ᾱ with Lemma 3.2 and (2.1), (2.5), we finally get

g1(∇ζ1ζ2, ω1) =g1(Tζ1 δ̄ζ2, �̄�ω1) + g1(v∇ζ1 δ̄ζ2 , δ̄ω1 ) + g1 (Tζ1 �̄�ζ2 , δ̄ω1 )

− 1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ζ2), ᾱ∗(�̄�ω1)) +

1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ζ2), ᾱ∗(�̄�ω1)).

On the other hand, for any ζ1, ζ2 ∈ Γ(D⊥), β1 ∈ Γ(ker ᾱ∗)
⊥ and by using (2.11), (2.13),

(2.15), we have

g1(∇ζ1ζ2, β1) = g1(∇ζ1ϕζ2, ϕβ1) + g1(δ̄ζ1, ζ2)η(β1).

Finally, in the light of (2.4), (2.5), (2.1) and (2.9), we get

g1(∇ζ1ζ2, β1) =
1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ζ2), ᾱ∗(Nβ1))−
1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ζ2), ᾱ∗(Nβ1))

+ g1(Tζ1 δ̄ζ2,Nβ1) + g1(v∇ζ1 δ̄ζ2 ,J β1 ) + g1 (Tζ1 �̄�ζ2 ,J β1 )

+ g1(δ̄ζ1, ζ2)η(β1).

This is the required proof of theorem. □

Theorem 3.5. Let ᾱ : (Ξ1, ϕ, ξ, η, g1) → (Ξ2, g2) be a PWHSCS from a SM (Ξ1, ϕ, ξ, η, g1)

onto a RM (Ξ2, g2) such that the structure vector field ξ is horizontal. Then the slant

distribution defines totally geodesic foliation if and only if

1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ω1), ᾱ∗(�̄�ω2))−
1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ω1), ᾱ∗(�̄�ω2)) + g1(Tζ1�̄�ω1, δ̄ω2)

= g1([ω1, ζ1], ω2)− sin2θζ1(θ)g1(ω1, ω2) + cos2θg1(∇ζ1ω1, ω2)− g1(Tζ1�̄�δ̄W, ω2)

and

1

λ2
g2((∇ᾱ∗)(β2, �̄�ω1), ᾱ∗(�̄�ω2))−

1

λ2
g2(∇ᾱ

β2
ᾱ∗(�̄�ω1), ᾱ∗(�̄�ω2))

= g1([ω1, β2], ω2)− sin2θβ2(θ)g1(ω1, ω2) + cos2θg1(∇β2ω1, ω2)− g1(Aβ2�̄�δ̄ω1, ω2)

+ g1(Aβ2�̄�ω1, δ̄ω2) + g1(β2, �̄�ω2)g1(�̄�ω1, grad lnλ) + g1(�̄�ω1, �̄�ω2)g1(β2, grad lnλ)

− g1(β2, �̄�ω1)g1(�̄�ω2, grad lnλ),

for any ω1, ω2 ∈ Γ(Dθ), ζ1 ∈ Γ(D⊥) and β2 ∈ Γ(ker ᾱ∗)
⊥.

Proof. For any ω1, ω2 ∈ Γ(Dθ) and ζ1 ∈ Γ(D⊥) with using (2.10) , (2.11), (2.12) and (2.15),

we have

g1(∇ω1ω2, ζ1) = g1([ω1, ζ1], ω2) + g1(∇ζ1 δ̄
2ω1, ω2) + g1(∇ζ1�̄�δ̄ω1, ω2)− g1(∇ζ1�̄�ω1, ϕω2).

In the light of (2.5), (2.10) and (2.9) with Lemma 3.2, we can write

g(∇ω1ω2, ζ1) =− g1([ω1, ζ1], ω2) + sin2θζ1(θ)g1(ω1, ω2)− cos2θg1(∇ζ1ω1, ω2) + g1(Tζ1�̄�ω1, δ̄ω2)

− 1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ω1), ᾱ∗(�̄�ω2)) +

1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ω1), ᾱ∗(�̄�ω2)).

On the other hand, for any ω1, ω2 ∈ Γ(Dθ) and β2 ∈ Γ(ker ᾱ∗)
⊥ with using (2.10), (2.11),

(2.12) and (2.15), we get

g1(∇ω1ω2, β2) = −g1([ω1, β2], ω2)− g1(∇β2 δ̄
2ω1, ω2) + g1(∇β2�̄�δ̄ω1, ω2)− g1(∇β2�̄�ω1, ϕω2).
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From (2.7) and with lemma 3.2, we have

g1(∇ω1ω2, β2) =− g1([ω1, β2], ω2) + sin2θβ2(θ)g1(ω1, ω2)− cos2θg1(∇β2ω1, ω2)

+ g1(Aβ2�̄�δ̄ω1, ω2)− g1(Aβ2�̄�ω1, δ̄ω2)− g1(ℵ∇β2�̄�ω1, �̄�ω2).

Finally by using the horizontal conformality of ᾱ with (2.1), (2.9) and Lemma 2.1, we can

deduce that

g1(∇ω1ω2, β2) =− g1([ω1, β2], ω2) + sin2θβ2(θ)g1(ω1, ω2)− cos2θg1(∇β2ω1, ω2)

+ g1(Aβ2�̄�δ̄ω1, ω2)− g1(Aβ2�̄�ω1, δ̄ω2)−
1

λ2
g2(∇ᾱ

β2
ᾱ∗(�̄�ω1), ᾱ∗(�̄�ω2))

− g1(β2, �̄�ω2)g1(�̄�ω1, grad lnλ)− g1(�̄�ω1, �̄�ω2)g1(β2, grad lnλ)

+ g1(β2, �̄�ω1)g1(�̄�ω2, grad lnλ).

□

This completes the proof of theorem.

Theorem 3.6. Let ᾱ : Ξ1 → Ξ2 be a PWHSCS from SM (Ξ1, ϕ, ξ, η, g1) onto RM (Ξ2, g2)

with structure vector field ξ is horizontal. Then (ker ᾱ∗)
⊥ defines totally geodesic foliation if

and only if

1

λ2
g2(∇ᾱ

β1
ᾱ∗(Nβ2), ᾱ∗(�̄�ζ1))

= g1(β1, �̄�ζ1)g1(Nβ2, grad lnλ) + g1(Nβ2, �̄�ζ1)g1(β1, grad lnλ)

− g1(β1,Nβ2)g1(�̄�ζ1, grad lnλ)− g1(Aβ1J β2, �̄�ζ1)

− g1(v∇β1J β2 , δ̄ζ1 )− g1 (Aβ1Nβ2 , δ̄ζ1 )− η(β2 )g1 (β1 , �̄�ζ1 ),

for any β1, β2 ∈ Γ(ker ᾱ∗)
⊥ and ζ1 ∈ Γ(ker ᾱ∗).

Proof. For any β1, β2 ∈ Γ(ker ᾱ∗)
⊥ and ζ1 ∈ Γ(ker ᾱ∗) with using (2.10), (2.11), (2.12), (2.13),

(2.10) and (2.7), we can write

g1(∇β1β2, ζ1) =g1(Aβ1J β2, �̄�ζ1) + g1(v∇β1J β2 , δ̄ζ1 ) + g1 (Aβ1Nβ2 , δ̄ζ1 )

+ g1(H∇β1Nβ2, �̄�ζ1) + η(β2)g1(β1, �̄�ζ1).

By using the horizontal conformality of ᾱ with (2.1), (2.9) and Lemma 2.1, we finally get

g1(∇β1β2, ζ1) =g1(Aβ1J β2, �̄�ζ1) + g1(v∇β1J β2 , δ̄ζ1 ) + g1 (Aβ1Nβ2 , δ̄ζ1 )

− g1(β1, �̄�ζ1)g1(Nβ2, grad lnλ)− g1(Nβ2, �̄�ζ1)g1(β1, grad lnλ)

+ g1(β1,Nβ2)g1(�̄�ζ1, grad lnλ)−
1

λ2
g2(∇ᾱ

β1
ᾱ∗(Nβ2), ᾱ∗(�̄�ζ1))

+ η(β2)g1(β1, �̄�ζ1),

which is the required proof of the theorem. □

Theorem 3.7. Let ᾱ : (Ξ1, ϕ, ξ, η, g1) → (Ξ2, g2) be a PWHSCS where, (Ξ1, ϕ, ξ, η, g1) a

SM and (Ξ2, g2) a RM with structure vector field ξ is horizontal. Then the following are

equivalent.

(i) (ker ᾱ∗) defines a totally geodesic foliation.

(ii) 1
λ2 g2(∇ᾱ

ζ2
ᾱ∗(�̄�Qβ1), ᾱ∗(�̄�β2))+g1([β1, �̄�], β2)+g1(Aζ2 δ̄Pβ1, �̄�β2)+g1(Aζ2�̄�Pβ1, δ̄β2)

= sin2θζ2(θ)g1(Qβ1, β2)− cos2θg1(∇ζ2Qβ1, β2)− g1(v∇ζ2 δ̄Pβ1 , δ̄ζ2 )
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− g1 (H∇ζ2 �̄�Pβ1 , �̄�β2 )− g1 (Aζ2 �̄�Qβ1 , δ̄β2 )− η(β1 )g1 (ζ2 , �̄�β2 ) + η(β2 )g1 (δ̄ζ2 , β1 )

+ g1 (ζ2 , �̄�β2 )g1 (�̄�Qβ1 , grad lnλ) + g1 (�̄�Qβ1 , �̄�β2 )g1 (ζ2 , grad lnλ)

− g1 (ζ2 , �̄�Qβ1 )g1 (�̄�β2 , grad lnλ),

for any β1, β2 ∈ Γ(ker ᾱ∗) and ζ2 ∈ Γ(ker ᾱ∗)
⊥.

Proof. Considering the fact

g1(∇β1β2, ζ2) = −g1([β1, ζ2], β2)− g1(∇ζ2ϕβ1, ϕβ2)− η(β1)g1(ζ2, �̄�β2) + η(β2)g1(δ̄ζ2, β1),

by using (2.11), (2.15), (2.10) and (2.13) for any β1, β2 ∈ Γ(ker ᾱ∗) and ζ2 ∈ Γ(ker ᾱ∗)
⊥. In

the light of (3.17), (3.18) and (3.20), we can write

g1(∇β1β2, ζ2) =− g1([β1, ζ2], β2)− g1(∇ζ2 δ̄Pβ1, ϕβ2)− g1(∇ζ2�̄�Pβ1, ϕβ2)

− g1(∇ζ2�̄�Qβ1, ϕβ2)− η(β1)g1(ζ2, �̄�β2) + η(β2)g1(δ̄ζ2, β1)

− g1(∇ζ2 δ̄Qβ1, ϕβ2).

From (2.10), (2.7), (2.15) and (2.13), we have

g1(∇β1β2, ζ2) =− g1([β1, ζ2], β2)− g1(Aζ2 δ̄Pβ1, �̄�β2)− g1(v∇ζ2 δ̄Pβ1 , �̄�β2 )

− g1(H∇ζ2�̄�Pβ1, �̄�β2) + g1(∇ζ2 δ̄
2Qβ1, β2)− g1(Aζ2�̄�Qβ1, δ̄β2)

− g1(H∇ζ2�̄�Qβ1, �̄�β2)− η(β1)g1(ζ2, �̄�β2) + η(β2)g1(δ̄ζ2, β1)

− g1(Aζ2�̄�Pβ1, δ̄β2).

By using (2.1), (2.9) and from the fact that ᾱ is a PWHSCS, we finally get

g1(∇β1β2,W ) =− g1([β1, ζ2], β2)− g1(Aζ2 δ̄Pβ1, �̄�β2)− g1(v∇ζ2 δ̄Pβ1 , �̄�β2 )

− g1(H∇ζ2�̄�Pβ1, �̄�β2) + sin2θζ2(θ)g1(Qβ1, β2)− cos2θg1(∇ζ2Qβ1, β2)

− g1(Aζ2�̄�Qβ1, δ̄β2)−
1

λ2
g2(∇ᾱ

ζ2ᾱ∗(�̄�Qβ1), ᾱ∗(�̄�β2))

+ g1(ζ2, �̄�β2)g1(�̄�Qβ1, grad lnλ) + g1(�̄�Qβ1, , �̄�β2)g1(ζ2, grad lnλ)

− g1(ζ2, �̄�Qβ1)g1(�̄�β2, grad lnλ)− η(β1)g1(ζ2, �̄�β2) + η(β2)g1(δ̄ζ2, X)

− g1(Aζ2�̄�Pβ1, δ̄β2).

This is complete proof of the theorem. □

Theorem 3.8. Let ᾱ : (Ξ1, ϕ, ξ, η, g1) → (Ξ1, g2) be a PWHSCS from a SM Ξ1 onto a RM
Ξ2 such that the structure vector field ξ is horizontal. Then ᾱ is totally geodesic map if and

only if

(i) 1
λ2 g2(∇ᾱ

β2
ᾱ∗(�̄�ω1), ᾱ∗(�̄�ζ1)) = sin2θβ2(θ)g1(ω1, ζ1)− cos2θg1(∇β2ω1, ζ1)

− g1(Aβ2�̄�δ̄ω1, ζ1)− g1(Aβ2�̄�ω1, δ̄ζ1) + g1(β2, �̄�ζ1)g1(�̄�ω1, grad lnλ)

+ g1(�̄�ω1, �̄�ζ1)g1(β2, grad lnλ)− g1(β2, �̄�ω1)g1(�̄�ζ1, grad lnλ)− g1([β2, ω1], ζ1)

(ii) Tζ2J �̄�ω1 +∇ζ2N �̄�ω2 ∈ Γ(ker ᾱ∗)

(iii) 1
λ2 g2(∇ᾱ

β1
ᾱ∗(�̄�δ̄ω1), ᾱ∗(β2)) = cos2θg1(∇β1ω1, β2)− g1(Aβ1�̄�ω1,J β2)

+ 1
λ2 g2((∇ᾱ∗)(β1, �̄�δ̄ω1), ᾱ∗(β2)) +

1
λ2 g2((∇ᾱ∗)(β1, �̄�ω1), ᾱ∗(Nβ2))

− 1
λ2 g2(∇ᾱ

β1
ᾱ∗(�̄�ω1), ᾱ∗(Nβ2))− g1(J β1, ω1)η(β2),

for any ω1, ζ1 ∈ Γ(Dθ), ζ2, ω2 ∈ Γ(D⊥) and β1, β2 ∈ Γ(ker ᾱ∗)
⊥.
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Proof. By using (2.1), (2.15), (2.9) and (2.13), we can write

1

λ2
g2((∇ᾱ∗)(ω1, ζ1), ᾱ∗(β2)) = −g([β2, ω1], ζ1)− g1(∇β2ϕω1, ϕζ1),

for any ω1, ζ1 ∈ Γ(Dθ) and β2 ∈ Γ(ker ᾱ∗)
⊥. In the light of (3.18), (2.13) and Lemma 3.2, we

get

1

λ2
g2((∇ᾱ∗)(ω1, ζ1), ᾱ∗(β2)) =− g([β2, ω1], ζ1) + sin2θβ2(θ)g1(ω1, ζ1)− cos2θg1(∇β2ω1, ζ1)

− g1(Aβ2�̄�ω1, δ̄ζ1)− g1(H∇β2�̄�ω1, �̄�ζ1).

From (2.9) and by using the horizontal conformality from Lemma 2.1, we have

1

λ2
g2((∇ᾱ∗)(ω1, ζ1), ᾱ∗(β2))

= −g([β2, ω1], ζ1) + sin2θβ2(θ)g1(ω1, ζ1)− cos2θg1(∇β2ω1, ζ1)

− g1(Aβ2�̄�ω1, δ̄ζ1)−
1

λ2
g2(∇ᾱ

β2
ᾱ∗(�̄�ω1), ᾱ∗(�̄�ζ1))

+ g1(β2, �̄�ζ1)g1(�̄�ω1, grad lnλ) + g1(�̄�ω1, �̄�ζ1)g1(β2, grad lnλ)

− g1(β2, �̄�ω1)g1(�̄�ζ1, grad lnλ),

which is the proof of (i). On the other hand, from (2.1), (2.9), (2.13) and (2.15), we get

1

λ2
g2((∇ᾱ∗)(ω1, ζ1), ᾱ∗(β2)) = −g1(∇ζ2ϕω2, ϕβ1),

for ζ2, ω2 ∈ Γ(D⊥) and β1 ∈ Γ(ker ᾱ∗)
⊥. By using the fact ϕω2 ∈ Γ(ker ᾱ∗)

⊥, ω2 ∈ Γ(D⊥)

and from (2.4), (2.5), we have

1

λ2
g2((∇ᾱ∗)(ω1, ζ1), ᾱ∗(β2)) = g1(Aζ2J �̄�ω2, β1) + g1(H∇ζ2N �̄�ω2, β1),

which proves the (ii) part. For part (iii), by using (2.1), (2.9), (2.11) and (2.13), we can

write
1

λ2
g2((∇ᾱ∗)(β1, ω1), ᾱ∗(β2)) = −g1(∇β1ϕω1, ϕβ2)− g1(J β1, ω1)η(β2),

for any ω1 ∈ Γ(Dθ) and β1, β2 ∈ Γ(ᾱ∗)
⊥. In the light of (3.18), (2.11), (2.13), (2.7) and

Lemma 3.2, we get

1

λ2
g2((∇ᾱ∗)(ω1, ζ1), ᾱ∗(β2)) =− cos2θg1(∇β1ω1, β2)− g1(H∇β1�̄�δ̄ω1, β2)− g1(Aβ1�̄�ω1,J β2)

− g1(H∇β1�̄�ω1,Nβ2)− g1(J β1, ω1)η(β2).

By using the horizontal conformality of ᾱ with (2.9) and Lemma 2.1, we finally have

1

λ2
g2((∇ᾱ∗)(ω1, ζ1), ᾱ∗(β2))

= −cos2θg1(∇β1ω1, β2)− g1(Aβ1�̄�ω1,J β2)− g1(J β1, ω1)η(β2)

+
1

λ2
g2((∇ᾱ∗)(β1, �̄�δ̄ω1), ᾱ∗(β2))−

1

λ2
g2(∇ᾱ

β1
ᾱ∗(�̄�δ̄ω1), ᾱ∗(β2))

+
1

λ2
g2((∇ᾱ∗)(β1, �̄�ω1), ᾱ∗(Nβ2))−

1

λ2
g2(∇ᾱ

β1
ᾱ∗(�̄�ω1), ᾱ∗(Nβ2)).

This completes the proof of theorem. □
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Theorem 3.9. Let ᾱ : (Ξ1, ϕ, ξ, η, g1) → (Ξ2, g2) be a PWHSCS where, (Ξ1, ϕ, ξ, η, g1) a

SM and (Ξ2, g2) a RM with structure vector field ξ is horizontal. Suppose ᾱ is Dθ-ϕ-

pluriharmonic. Then the following are equivalent.

(i) Dθ defines a totally geodesic foliation.

(ii) ∇ᾱ
ζ1
ᾱ∗(ζ2) +∇ᾱ

ϕζ1
ᾱ∗(�̄�ζ1)−∇ᾱ

ζ1
ᾱ∗(�̄�ζ2) = cos2θᾱ∗(NH∇δ̄ζ1

ζ2 + �̄�Tδ̄ζ1ζ2
+ �̄�v∇�̄�ζ1 ζ2 )− sin2θ(δ̄ζ1 (θ)ᾱ∗(�̄�ζ2 ) + �̄�ζ1 (θ)ᾱ∗(�̄�ζ2 ))− η(∇�̄�ζ1 δ̄ζ2 )ᾱ∗ξ

− ᾱ∗(H∇δ̄ζ1
ζ2 + �̄�A�̄�ζ1 �̄�δ̄ζ2 +NH∇�̄�ζ1 �̄�δ̄ζ2 )− �̄�ζ1 (lnλ)ᾱ∗(�̄�ζ2 )

− �̄�ζ2 (lnλ)ᾱ∗(�̄�ζ1 ) + g1 (�̄�ζ1 , �̄�ζ2 )ᾱ∗(grad lnλ)− ᾱ∗(Hδ̄ζ1
�̄�ζ2 ) +NA�̄�ζ1 ζ2 ,

for any ζ1, ζ2 ∈ Γ(Dθ).

Proof. By using the concept of ϕ-pluriharmonicity with (3.18) and (2.9), we have

ᾱ∗∇ζ1ζ2 = ∇ᾱ
ζ1ᾱ∗(ζ2) +∇ᾱ

δ̄ζ1
ᾱ∗(ϕζ2)− ᾱ∗∇δ̄ζ1

δ̄ζ2 − ᾱ∗∇δ̄ζ1
�̄�ζ2 − ᾱ∗∇�̄�ζ1 δ̄ζ2 − ᾱ∗∇�̄�ζ1�̄�ζ2,

for any ζ1, ζ2 ∈ Γ(Dθ). In the light of (2.5), (2.13) and (2.12), we can write

ᾱ∗∇ζ1ζ2

= ∇ᾱ
ζ1ᾱ∗(ζ2) +∇ᾱ

ϕζ1ᾱ∗(ϕζ2) + ᾱ∗(ϕ∇δ̄ζ1
ϕδ̄ζ2 + η(∇δ̄ζ1

δ̄ζ2)ξ)

+ ᾱ∗(ϕ∇�̄�ζ1ϕδ̄ζ2 + η(∇�̄�ζ1 δ̄ζ2)ξ)− ᾱ∗∇�̄�ζ1�̄�ζ2 − ᾱ∗∇δ̄ζ1
�̄�ζ2.

By using (2.4), (2.7) and Lemma 3.2, we get

ᾱ∗∇ζ1ζ2

= ∇ᾱ
ζ1ᾱ∗(ζ2) +∇ᾱ

ϕζ1ᾱ∗(ϕζ2) + sin2θδ̄ζ1(θ)ᾱ∗(ϕζ2)− cos2θᾱ∗(ϕ∇δ̄ζ1
ζ2)

+ sin2θ�̄�ζ1(θ)ᾱ∗(ϕζ2)− cos2θᾱ∗(ϕ∇�̄�ζ1ζ2) + ᾱ∗{ϕ(Tδ̄ζ1ζ2 +H∇δ̄ζ1
ζ2)}

+ η(∇δ̄ζ1
δ̄ζ2)ᾱ∗ξ + ᾱ∗{ϕ(A�̄�ζ1�̄�δ̄ζ2 +H∇�̄�ζ1�̄�δ̄ζ2)}+ η(∇�̄�ζ1 δ̄ζ2)ᾱ∗ξ

−∇ᾱ
�̄�ζ1

ᾱ∗(�̄�ζ2) + (∇ᾱ∗)(�̄�ζ1, �̄�ζ2)− ᾱ∗(Tδ̄ζ1�̄�ζ2 +Hδ̄ζ1
�̄�ζ2).

Finally, by using the horizontal conformality of ᾱ from Lemma 2.1 and with (2.7), (2.1), we

have

ᾱ∗∇ζ1ζ2 =∇ᾱ
ϕζ1ᾱ∗(ϕζ2) + sin2θδ̄ζ1(θ)ᾱ∗(�̄�ζ2)− cos2θᾱ∗(NH∇δ̄ζ1

ζ2 + �̄�Tδ̄ζ1ζ2)

+ sin2θ�̄�ζ1(θ)ᾱ∗(�̄�ζ2)− cos2θᾱ∗(NA�̄�ζ1ζ2 + �̄�v∇�̄�ζ1 ζ2 ) + ᾱ∗(H∇δ̄ζ1
ζ2 )

+ η(∇δ̄ζ1
δ̄ζ2)ᾱ∗ξ + ᾱ∗{�̄�(A�̄�ζ1�̄�δ̄ζ2 +NH∇�̄�ζ1�̄�δ̄ζ2)}+ η(∇�̄�ζ1 δ̄ζ2)ᾱ∗ξ

+ �̄�ζ1(lnλ)ᾱ∗(�̄�ζ2) + �̄�ζ2(lnλ)ᾱ∗(�̄�ζ1)− g1(�̄�ζ1, �̄�ζ2)ᾱ∗(grad lnλ)

− ᾱ∗(Hδ̄ζ1
�̄�ζ2) +∇ᾱ

ζ1ᾱ∗(ζ2)−∇ᾱ
�̄�ζ1

ᾱ∗(�̄�ζ2).

□

This completes the proof of the theorem.

4. Pointwise hemi-slant conformal submersions with vertical Reeb vector

field-ξ

This section will go over the definitions and results that will help us understand and

investigate the concept of pointwise hemi-slant conformal submersions from ACMMs by

considering the Reeb vector filed ξ vertical.
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Definition 4.1. Let ᾱ : (Ξ1, ϕ, ξ, η, g1) → (Ξ2, g2) be a HCS where (Ξ1, ϕ, ξ, η, g1) is an

ACMM and (Ξ2, g2) is a RM. A HCS ᾱ is called a pointwise hemi-slant conformal sub-

mersion if there exists distributions D⊥ and Dθ such that kerᾱ∗ = Dθ⊕D⊥⊕ < ξ >, ϕ(D⊥) ⊆
Γ(ker ᾱ)⊥ and for any given point q ∈ Ξ1 and β1 ∈ (Dθ)q, the angle θ = θ(β1) between ϕβ1

and space (Dθ)q is independent of choice of non-zero vector β1 ∈ (Dθ)q, where Dθ is the

orthogonal complement of D⊥ in kerᾱ∗ and < ξ > is 1-dimensional distribution. The angle

θ is a slant function, often known as the pointwise hemi-slant function of submersion.

Let ᾱ be a PWHSCS from an ACMM (Ξ1, ϕ, ξ, η, g1) onto a RM (Ξ2, g2) with vertical

Reeb vector field ξ. Then, for any Y ∈ (kerᾱ∗), we have

Y = Pβ2 +Qβ2 + η(β2)ξ (4.24)

where P and Q are the projections morphism onto D⊥ and Dθ.

Lemma 4.1. Let ᾱ be a PWHSCS from an ACMM (Ξ1, ϕ, ξ, η, g1) onto a RM (Ξ2, g2),

then we have

δ̄2ω2 = − cos2θ(I − η ⊗ ξ)ω2, (4.25)

for any vector field ω2 ∈ Γ(kerᾱ∗).

Lemma 4.2. Let ᾱ be a PWHSCS with vertical ξ, from an ACMM (Ξ1, ϕ, ξ, η, g1) onto a

RM (Ξ2, g2), then we have

(i) g1(δ̄ζ1, δ̄ζ2) = cos2 θ{g1(ζ1, ζ2)− η(ζ1)η(ζ2)},
(ii) g1(�̄�ζ1, �̄�ζ2) = sin2 θ{g1(ζ1, ζ2)− η(ζ1)η(ζ2)},

for any vector fields ζ1, ζ2 ∈ Γ(kerᾱ∗).

Moving further, we shall talk about the integrability of slant and anti-invariant distribu-

tions Dθ and D⊥ respectively.

Theorem 4.1. Let ᾱ be a PWHSCS from SM onto a RM with vertical ξ and θ is a

hemi-slant function, tfae

(i) The anti-invariant distribution D⊥ is integrable.

(ii) 1
λ2 g2(∇ᾱ

ζ2
ᾱ∗(�̄�ζ1)−∇ᾱ

ζ1
ᾱ∗(�̄�ζ2), ᾱ∗(�̄�ω1))

= g(∇ζ1�̄�δ̄ζ2 +∇ζ2�̄�δ̄ζ1, ω1)− g(Tζ1�̄�ζ2 + Tζ2�̄�ζ1, δ̄ω1),

for any ζ1, ζ2 ∈ Γ(D⊥) and ω1 ∈ Dθ.

By comparing the preceding conclusion with Theorem 3.1, it is inescapable that there is

no influence of the Reeb vector field ξ, whether horizontal or vertical. For slant distribution,

we have

Lemma 4.3. Let ᾱ : (Ξ1, ϕ, ξ, η, g1) → (Ξ2, g2) be a PWHSCS with ξ ∈ Γ(kerᾱ∗) where,

(Ξ1, ϕ, ξ, η, g1) a SM and (Ξ2, g2) a RM. Then the slant distribution is not integrable.

Since the slant distribution is not integrable, now we will discuss about distribution Dθ⊕ <

ξ >.

Theorem 4.2. Let ᾱ : Ξ1 → Ξ2 be a PWHSCS from a SM Ξ1 onto a RM Ξ2 such that ξ

is vertical. Then the following are equivalent.
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(i) Slant distribution Dθ⊕ < ξ > is integrable.

(ii) 1
λ2 g2(∇ᾱ

ζ1
ᾱ∗(�̄�ω1), ᾱ∗(�̄�ω2)) +

1
λ2 g2(∇ᾱ

ω2
ᾱ∗(�̄�ω1), ᾱ∗(ϕζ1)) + g1([ω1, ζ1], ω2)

= sin2θg1(ω1, ω2)− cos2θg1(∇ζ1ω1, ω2)− g1(Tζ1�̄�ω1, δ̄ω2)− g1(Tω2�̄�ω1, ϕζ1),

for any ω1, ω2 ∈ Γ(Dθ⊕ < ξ >) and ζ1 ∈ Γ(D⊥).

Proof. For any ω1, ω2 ∈ Γ(Dθ⊕ < ξ >) and ζ1 ∈ Γ(D)⊥ with taking account the fact from

(2.11), (2.13), (2.15), (2.4), (2.5), (2.1) with Lemma 3.2, we get

g1([ω1, ω2], ζ1)

= −g1([ω1, ζ1], ω2) + sin2θζ1(θ)g1(ω1, ω2)− cos2θg1(∇ζ1ω1, ω2)− g1(Tω2 δ̄ω1, ϕζ1)

− g1(Tζ1�̄�ω1, δ̄ω2)−
1

λ2
g2(ᾱ∗(ℵ∇ζ1�̄�ω1), ᾱ∗(�̄�ω2))−

1

λ2
g2(ᾱ∗(ℵ∇ω2�̄�ω1), ᾱ∗(ϕζ1)).

By using the horizontal conformality of ᾱ with Lemma 2.1 and (2.5), we finally have

g1([ω1, ω2], ζ1)

= −g1([ω1, ζ1], ω2) + sin2θζ1(θ)g1(ω1, ω2)− cos2θg1(∇ζ1ω1, ω2)− g1(Tω2 δ̄ω1, ϕζ1)

− g1(Tζ1�̄�ω1, δ̄ω2)−
1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ω1), ᾱ∗(�̄�ω2)) +
1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ω1), ᾱ∗(�̄�ω2))

− 1

λ2
g2(∇ᾱ

ω2
ᾱ∗(�̄�ω1), ᾱ∗(ϕζ1)) +

1

λ2
g2((∇ᾱ∗)(ω2, �̄�ω1), ᾱ∗(ϕζ1)).

□

Although the nature of ξ differs, the proofs of Theorem 3.2 and the previous result are

identical as well.

Corollary 4.1. Let ᾱ : (Ξ1, ϕ, ξ, η, g1) → (Ξ2, g2) be a PWHSCS from SM (Ξ1, ϕ, ξ, η, g1)

onto a RM (Ξ2, g2) with hemi-slant function θ. The following conditions holds.

Let
ᾱ : (Ξ1, ϕ, ξ, η, g1)
→ (Ξ2, g2)
be a PWHSCS
from SM onto a
RM with hemi
slant function θ.
Then

(i) Dθ⊕ < ξ > is integrable with
ξ ∈ Γ(kerᾱ∗) if and only if

(ii) Dθ is integrable with
ξ ∈ Γ(kerᾱ∗)

⊥ if and only if
1
λ2 g2(∇ᾱ

ζ1
ᾱ∗(�̄�ω1), ᾱ∗(�̄�ω2))

+ 1
λ2 g2(∇ᾱ

ω2
ᾱ∗(�̄�ω1), ᾱ∗(ϕζ1))

+g1([ω1, ζ1], ω2) = sin2θ
g1(ω1, ω2)− g1(Tζ1�̄�ω1, δ̄ω2)
-cos2θg1(∇ζ1ω1, ω2)
-g1(Tω2�̄�ω1, ϕζ1)

1
λ2 g2(∇ᾱ

ζ1
ᾱ∗(�̄�ω1), ᾱ∗(�̄�ω2))

+ 1
λ2 g2(∇ᾱ

ω2
ᾱ∗(�̄�ω1), ᾱ∗(ϕζ1))

+g1([ω1, ζ1], ω2) = sin2θ
g1(ω1, ω2)− g1(Tω2�̄�ω1, ϕζ1)
-cos2θg1(∇ζ1ω1, ω2)
-g1(Tζ1�̄�ω1, δ̄ω2)

Then, for (i), ω1, ω2 ∈ Γ(Dθ⊕ < ξ >) and ζ1 ∈ Γ(D⊥), for (ii), ω1, ω2 ∈ Γ(Dθ) and

ζ1 ∈ Γ(D⊥).

For totally geodesicness of anti-invariant distribution D⊥ considering ξ to be vertical spe-

cially D⊥⊕ < ξ >, we have

Theorem 4.3. Let ᾱ be a PWHSCS from SM (Ξ1, ϕ, ξ, η, g1) onto a RM (Ξ2, g2) with

hemi-slant function θ and vertical Reeb vector field ξ. Then the anti-invariant distribution

D⊥⊕ < ξ > defines a totally geodesic foliation if and only if

1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ζ2), ᾱ∗(�̄�ω1)) =
1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ζ2), ᾱ∗(�̄�ω1))− g1(Tζ1 δ̄ζ2, �̄�)

− g1(v∇ζ1 δ̄ζ2 , δ̄ω1 )− g1 (Tζ1 �̄�ζ2 , δ̄ω1 )
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and

1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ζ2), ᾱ∗(Nβ1)) =
1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ζ2), ᾱ∗(Nβ1))− g1(Tζ1 δ̄ζ2,Nβ1)

− g1(v∇ζ1 δ̄ζ2 ,J β1 )− g1 (Tζ1 �̄�ζ2 ,J β1 ) + g1 (ζ1 ,Bβ1 )η(ζ2 ),

for any ζ1, ζ2 ∈ Γ(D⊥⊕ < ξ >), ω1 ∈ Γ(Dθ) and β1 ∈ Γ(ker ᾱ∗)
⊥.

Proof. From (2.11), (2.13, (2.1), (2.4), (2.5) and (2.15), we obtain

g1(∇ζ1ζ2, ω1) =g1(Tζ1�̄�ζ2, δ̄ω1) +
1

λ2
g2(ᾱ∗(ℵ∇ζ1�̄�ζ2), ᾱ∗(�̄�ω1))

+ g1(Tζ1 δ̄ζ2, �̄�ω1) + g1(v∇ζ1 δ̄ζ2 , δ̄ω1 ).

Lemma 3.2, (2.1), and the horizontal conformality of ᾱ allow us to ultimately obtain

g1(∇ζ1ζ2, ω1) =g1(Tζ1 δ̄ζ2, �̄�ω1) + g1(v∇ζ1 δ̄ζ2 , δ̄ω1 ) + g1 (Tζ1 �̄�ζ2 , δ̄ω1 )

− 1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ζ2), ᾱ∗(�̄�ω1)) +

1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ζ2), ᾱ∗(�̄�ω1)).

However, using (2.11), (2.13), (2.4), (2.5), (2.1), (2.9) and (2.15), for any ζ1, ζ2 ∈ Γ(D⊥) and

β1 ∈ Γ(ker ᾱ∗)
⊥, we have

g1(∇ζ1ζ2, β1) =
1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ζ2), ᾱ∗(Nβ1))−
1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ζ2), ᾱ∗(Nβ1))

+ g1(Tζ1 δ̄ζ2,Nβ1) + g1(v∇ζ1 δ̄ζ2 ,J β1 ) + g1 (Tζ1 �̄�ζ2 ,J β1 )

+ g1(ζ1,Bβ1)η(ζ2).

This is the required proof of theorem. □

Theorem 4.4. Let ᾱ be a PWHSCS from SM (Ξ1, ϕ, ξ, η, g1) onto a RM (Ξ2, g2) with

hemi-slant function θ and vertical Reeb vector field ξ. Then the slant distribution D⊥ not

defines totally geodesic foliation.

Since the slant distribution is not defines totally geodesic foliation, we can discuss the total

geodesicness of Dθ⊕ < ξ > as follows :

Corollary 4.2. Let ᾱ be a PWHSCS from SM (Ξ1, ϕ, ξ, η, g1) onto a RM (Ξ2, g2) with

hemi-slant function θ and vertical Reeb vector field ξ. Then the slant distribution D⊥⊕ < ξ >

defines a totally geodesic foliation if and only if

1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ζ2), ᾱ∗(�̄�ω1)) =
1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ζ2), ᾱ∗(�̄�ω1))− g1(Tζ1 δ̄ζ2, �̄�)

− g1(v∇ζ1 δ̄ζ2 , δ̄ω1 )− g1 (Tζ1 �̄�ζ2 , δ̄ω1 )
(4.26)

and

1

λ2
g2(∇ᾱ

ζ1ᾱ∗(�̄�ζ2), ᾱ∗(Nβ1))

=
1

λ2
g2((∇ᾱ∗)(ζ1, �̄�ζ2), ᾱ∗(Nβ1))− g1(Tζ1 δ̄ζ2,Nβ1)

− g1(v∇ζ1 δ̄ζ2 ,J β1 )− g1 (Tζ1 �̄�ζ2 ,J β1 )− g1 (δ̄�̄�ζ1 , β1 )η(ζ2 ),

(4.27)

for any ζ1, ζ2 ∈ Γ(D⊥), ω1 ∈ Γ(Dθ) and β1 ∈ Γ(ker ᾱ∗)
⊥.

Theorem 3.4 provides an easy way to prove the above conclusion by taking the vertical

character of ξ-. When we compare the proof of both results, there is no change in equations
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(3.22) and (4.26), but in comparison (3.23) and (4.27), single term g1(δ̄ζ1, ζ2)η(β1) is substi-

tuted by −g1(δ̄�̄�ζ1, β1)η(ζ2).

5. Conclusion

This research article examined the effect of a vector field ξ- with dual nature (vertical and

horizontal) on pointwise hemi-slant conformal submersions from Sasakian manifolds. The

conditions of distribution integrabiities and their leaves’ total geodesicness are also examined.
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Abstract. In this article, we examine the interaction between Ricci solitons and the

properties of the geometric structure in a perfect fluid spacetimes that admits a Lorentzian

Concircular structure manifold with a Concircular curvature tensor. We investigate the

conditions under which a Ricci soliton exists within such a framework and analyze its

implications on the curvature properties of the spacetime. The study focuses on the influence

of the soliton potential on the energy-momentum tensor of the perfect fluid and examines the

interplay between the Ricci curvature and the Concircular structure. Further, we establish

key geometric conditions that characterize the nature of the Ricci soliton in this setting

and derive significant constraints on the manifolds topology. Our findings contribute to the

broader understanding of the role of Ricci solitons in relativistic fluids and their impact on

spacetime geometry.
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1. Introduction

Geometric flows have emerged as a crucial tool in the study of Riemannian and semi-

Riemannian manifolds, as well as in the theory of general relativity. In his foundational

work, Hamilton [12] identified the Ricci flow as an effective method for refining the structure

of a manifold. This process modifies the metric of a Riemannian manifold M over time,

helping to smooth out its irregularities. The Ricci flow is defined by:

∂g

∂t
= −2Ric (1.1)

where g represents the components of the metric tensor, Ric is the Ricci curvature tensor,

and t denotes the time parameter. Ricci solitons represent self-similar solutions to the Ricci

flow. They have attracted considerable attention in both differential geometry and general

relativity due to their strong connection with the Ricci flow and their role as a generalization

of Einstein metrics. On a Riemannian manifold (M, g), a Ricci soliton is a particular type of
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solution to the Ricci flow equation. It can be viewed as a natural extension of an Einstein

metric and is characterized by a triple (g, V, a), where the following condition holds:

LV g + 2Ric+ 2ag = 0, (1.2)

where Ric is the Ricci curvature tensor of the metric g, LV g denotes the Lie derivative of

g along the vector field V on M, and a is a scalar constant. A Ricci soliton (g, V, a) on

a manifold M is classified as shrinking, steady, or expanding depending on the sign of the

constant a. Specifically, the soliton is: shrinking if a < 0 : the manifold contracts over time,

steady if a = 0 : the metric evolves trivially under the flow, and expanding if a > 0 : the

manifold expands over time.

Ricci solitons are fundamental in the analysis of geometric flows and general relativity, act-

ing as self-similar solutions to the Ricci flow equation. Their importance has led to extensive

investigations across various spacetime geometries, as they offer a deeper understanding of

how geometric structures evolve over time. Notably, exploring Ricci solitons within perfect

fluid spacetimes offers meaningful contributions to the fields of relativistic hydrodynamics

and cosmological modeling. A perfect fluid spacetime is an idealized model in which the

energy-momentum tensor represents a fluid with no viscosity or heat conduction, making it

a fundamental framework in general relativity. When such a spacetime admits a Lorentzian

Concircular structure, it imposes additional geometric constraints that influence the cur-

vature properties and behavior of Ricci solitons. The Lorentzian Concircular structure,

characterized by a Concircular vector field, plays a significant role in studying the conformal

geometry of spacetime and its interaction with fluid dynamics.

As a natural extension of the Lorentzian para-Sasakian manifold (commonly referred to as

the LP-Sasakian manifold, introduced by Matsumoto) A.A. Shaikh [21] developed the concept

of Lorentzian Concircular structure manifolds, exploring their existence and significance in

both cosmology and the general theory of relativity. These manifolds, denoted as (LCS)n-

manifolds, form a notable subclass within the broader category of semi-Riemannian manifolds

and play a crucial role in the analysis of spacetime geometry, especially in four-dimensional

equipped with a Lorentzian metric g with signature (−,+,+,+). The Lorentzian metric,

which stands out among indefinite metrics, introduces a distinct geometric framework where

not all directions are equivalent. This leads to a classification of vectors into timelike, lightlike

(null), and spacelike, depending on how they interact with the metric. The foundation of

Lorentzian geometry lies in understanding the causal character of these vectors. This causal

structure is what makes Lorentzian manifolds particularly well-suited for modeling spacetime

in the context of Einsteins theory of general relativity [14].

In recent years, Ricci solitons have been extensively explored by several geometers across

a wide range of geometric frameworks in [1], [4], [5], [7], [9], [10], [11], [16], [17], [19], [20].

Furthermore, a number of researchers have investigated perfect fluid spacetimes from the

perspective of Ricci soliton geometry, highlighting their structural and curvature properties

in [3], [6], [8], [18], [24].

Based on the above this research investigates the relationship between Ricci solitons and

the geometric framework of a perfect fluid spacetime that possesses a Lorentzian Concircular

structure. By examining the essential characteristics of these spacetimes, the study aims to
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understand the role Ricci solitons play in shaping their geometric progression and stability.

Additionally, the work seeks to identify the criteria necessary for the existence of such soli-

tons, thereby offering valuable insights into their significance within the realms of differential

geometry and theoretical physics.

Relativistic fluid models play a vital role across various areas of physics, including as-

trophysics, plasma physics, and nuclear physics. In the context of general relativity, perfect

fluids serve as simplified yet powerful models for describing matter distributions, such as those

found within stars or in an isotropic universe. Einsteins field equations can be employed to

analyze the dynamics of a perfect fluid enclosed in a spherical body, while the FLRW equa-

tions are instrumental in modeling the large-scale evolution of the universe. Within general

relativity, the energy-momentum tensor acts as the source of spacetime curvature. A perfect

fluid is fully described by its mass density in the rest frame and its isotropic pressure. It

lacks shear stresses, viscosity, and heat conduction, and its energy-momentum tensor takes

the following form:

T (U, V ) = pg(U, V ) + (σ + p)η(U)η(V ). (1.3)

For any vector fields U, V ∈ χ(M), where p denotes the isotropic pressure, σ represents

the energy density, and g is the Minkowski metric tensor, the velocity vector of the fluid is

given by ξ := ♯(η), satisfying the normalization condition g(ξ, ξ) = −1. When the relation

σ = −p holds, the energy-momentum tensor becomes Lorentz-invariant, expressed as T =

−σg, corresponding to the vacuum state. Alternatively, when σ = 3p, the matter content is

identified as a radiation fluid.

The motion of a perfect fluid is governed by Einstein’s field equations, which describe the

interaction between matter and the curvature of spacetime:

Ric(U, V ) + (λ− r

2
)g(U, V ) = kT (U, V ). (1.4)

For any vector fields U, V ∈ χ(M), where λ denotes the cosmological constant, k represents

the gravitational constant (often taken as 8πG in geometric units with G the universal

gravitational constant), Ric is the Ricci curvature tensor, and r is the scalar curvature

associated with the metric g. These modified field equations arise from Einsteins original

formulation, where the cosmological constant was introduced in an attempt to model a static

universe. In contemporary cosmology, however, λ is interpreted as a potential form of dark

energy responsible for the observed accelerated expansion of the universe. Substituting the

expression for T from equation (1.3) into (1.4) we obtain:

Ric(U, V ) = −
[
λ− r

2
− kp

]
g(U, V ) + (σk + pk)η(U)η(V ), (1.5)

for any U, V ∈ χ(M). Recall that a manifold exhibits a particular geometric property when

its Ricci tensor Ric can be written as a functional combination of g and η ⊗ η, for η the g

dual 1-form of a unitary vector field, is called quasi-Einstein.

By contracting equation (1.5) and considering that g(ξ, ξ) = −1, we obtain:

r = 4λ+ kσ − 3kp. (1.6)
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Therefore, the resulting expression simplifies to:

Ric(U, V ) =

[
2λ+ kσ − pk

2

]
g(U, V ) + (kσ + kp)η(U)η(V ). (1.7)

This relation holds for all vector fields U, V ∈ χ(M).

QU =

[
2λ+ kσ − pk

2

]
U + (kσ + kp)η(U)ξ. (1.8)

Here, Ric denotes the Ricci tensor associated with the Ricci operator Q, defined by the

relation Ric(U, V ) = g(QU, V ).

2. Basic Concepts of Lorentzian Concircular structure manifold

In this section, we explore key concepts of Lorentzian Concircular structure manifolds: A

Lorentzian Concircular structure manifold is a smooth manifold M equipped with both a

Lorentzian metric g and a Concircular structure.

An n-dimensional smooth, connected, and paracontact Hausdorff manifold M, equipped

with a Lorentzian metric g, is referred to as a Lorentzian manifold. This implies that M

possesses a smooth, symmetric tensor field g of type (0, 2) such that for each point p ∈ M, the

bilinear form gp : TpM × TpM −→ R defines a non-degenerate inner product with signature

(−,+, . . . ,+). Here, TpM denotes the tangent vector space to M at p, and R represents the

field of real numbers. A non-zero vector v ∈ TpM is classified as timelike if gp(v, v) < 0,

non-spacelike if gp(v, v) ≤ 0, null if gp(v, v) = 0, or spacelike gp(v, v) > 0, [15]. The causal

character of a vector refers to the category it falls into based on this classification.

A Lorentzian manifoldM admits a unit timelike concircular vector field ξ, referred to as the

characteristic vector field of the manifold. The manifold satisfies the following fundamental

conditions:

g(U , ξ) = η(U), g(ξ, ξ) = −1, (∇Uη)(V) = α{g(U ,V) + η(U)η(V)}, (2.9)

where g denotes the Lorentzian metric, ξ is the unit timelike concircular vector field, η is

the associated 1-form, ∇ represents the Levi-Civita connection, and α is a smooth scalar

function on M. From equation (2.9), we obtain:

∇Uξ = α{U + η(U)ξ}. (2.10)

For any vector fields U ,V on M and ∇ represents the covariant derivative operator associated

with the Lorentzian metric g, and α is a non-zero scalar function that satisfies:

∇Uα = (Uα) = dα(U) = ρη(U). (2.11)

Let ρ denote a scalar function defined by ρ = −(ξα). By setting:

∇Uξ = αϕU . (2.12)

Then, using equations (2.10) and (2.12), we get:

ϕU = U + η(U)ξ. (2.13)

Here, ϕ is a (1, 1)-type tensor field, referred to as the structure tensor of M. A Lorentzian

manifold M, equipped with a unit timelike concircular vector field ξ, its associated 1-form
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η, and structure tensor field ϕ, is known as a Lorentzian Concircular structure manifold,

abbreviated as an (LCS)n-manifold [21]. In such a manifold, the following fundamental

relations are satisfied:

ϕ2V = V + η(V)ξ, η(ϕV) = 0, η(ξ) = −1, ϕ · ξ = 0, (2.14)

g(ϕU , ϕV) = g(U ,V) + η(U)η(V), (2.15)

η(R(U ,V)Z) = (α2 − ρ)[g(V, Z)η(U)− g(U , Z)η(V)], (2.16)

R(U ,V)ξ = (α2 − ρ)[η(V)U − η(U)V], (2.17)

Ric(U , ξ) = (n− 1)(α2 − ρ)η(U). (2.18)

For all vector fields U ,V, Z on M, let R denote the Riemann curvature tensor associated with

the Lorentzian metric g, and let Ric represent the Ricci tensor corresponding to the Ricci

operator Q, defined by Ric(U ,V) = g(QU ,V).
The Concircular curvature tensor Ç [3] is defined by the expression:

Ç(U ,V)Z = R(U ,V)Z − r

n(n− 1)
[g(V, Z)U − g(U , Z)V], (2.19)

where R is the Riemann curvature tensor, r denotes the scalar curvature, and Ric represent

the Ricci tensor associated with operator Q, that is, Ric(U ,V) = g(QU ,V).

3. Certain Geometric Properties of a Perfect Fluid Spacetime Admitting

Lorentzian Concircular structure manifolds

In this portion of the paper, we investigate the geometric characteristics of a perfect fluid

spacetime modeled on a Lorentzian Concircular structure manifold (denoted as (LCS)n-

manifold). Our aim is to explore how the intrinsic geometry of such a manifold interacts with

the energy-momentum distribution of a perfect fluid. We begin by recalling the fundamental

definitions and structure tensors associated with a Lorentzian Concircular structure manifold

and the energy-momentum tensor for a perfect fluid, followed by derivations of curvature

conditions, symmetry properties, and physical interpretations relevant to relativistic fluid

dynamics.

The Concircular curvature tensor Ç [3] in perfect fluid spacetime endowed with a 4-

dimensional Lorentzian Concircular structure manifold is defined as follows:

Ç(U ,V)Z = R(U ,V)Z − r

12
[g(V, Z)U − g(U , Z)V]. (3.20)

After Covariantly differentiating equation (3.20) and contracting, we derive

(divÇ)(U ,V)Z = (divR)(U ,V)Z − 1

12
[g(V, Z)(Ur)− g(U , Z)(Vr)]. (3.21)

Assuming divÇ = ∇ · Ç = 0, where div represents the divergence, we derive the following

from equation (3.21):

(∇URic)(V, Z)− (∇VRic)(U , Z) =
1

12
[g(V, Z)(Ur)− g(U , Z)(Vr)]. (3.22)

Since r is a constant scalar curvature, the preceding relation indicates that

g((∇UQ)V − (∇VQ)U , Z) = 0 =⇒ (∇UQ)V − (∇VQ)U = 0. (3.23)
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By substituting equation (1.8) into (3.23), we obtain:

k(σ + p)[g(V,∇Uξ)ξ + η(V)∇Uξ − g(U ,∇Vξ)ξ − η(U)∇Vξ] = 0. (3.24)

Inserting (2.12), (2.13) in (3.24) and on simplification, we get:

k(σ + p)α[η(V)U − η(U)V] = 0. (3.25)

Here, k denotes the gravitational constant defined as k = 8πG in geometrized units, where

G is the universal gravitational constant. The preceding equation leads to the condition

p = −σ, under the assumption that α ̸= 0. This leads us to the following conclusion:

Theorem 3.1. Let (M, g) be a general relativistic perfect fluid spacetime endowed with a

Lorentzian Concircular structure manifold satisfying (1.7). If the divergence of the Concir-

cular curvature tensor vanishes, that is, divÇ = ∇ · Ç = 0, then the pressure and energy

density satisfy p = −σ provided that α ̸= 0.

If the Concircular curvature tensor is Concircularly flat, that is, Ç(U ,V)Z = 0, then by

equation (1.6), it follows that:

R(U ,V)Z =
4λ+ k(σ − 3p)

12
[g(V, Z)U − g(U , Z)V]. (3.26)

If the condition p = −σ is imposed in equation (3.26), then it results in the following

expression:

R(U ,V)Z =
λ+ kσ

3
[g(V, Z)U − g(U , Z)V]. (3.27)

Based on this, we propose the following statement:

Theorem 3.2. Let (M, g) be a general relativistic perfect fluid spacetime that satisfies equa-

tion (1.6) and possesses a Lorentzian Concircular structure. If the Concircular curvature

tensor Ç = 0 vanishes, implying that the manifold is Concircularly flat, then the spacetime

has constant curvature given by λ+kσ
3 .

In this case, we investigate the curvature properties under the assumption that the space-

time is 4-dimensional ξ-Concircularly flat that is:

Using the definition of the Concircular curvature tensor, we have:

Ç(U ,V)ξ = R(U ,V)ξ − r

12
[g(V, ξ)U − g(U , ξ)V]. (3.28)

If the manifold is ξ-Concircularly flat, then Ç(U ,V)ξ = 0, which implies:

R(U ,V)ξ =
r

12
[g(V, ξ)U − g(U , ξ)V]. (3.29)

By applying equations (1.6) and (2.17) in (3.29), the following result is derived:[
−[4λ+ k(σ − 3p)] + 12(α2 − ρ)

12

]
[η(V)U − η(U)V] = 0. (3.30)

From (3.30), we get:

p =
4λ+ kσ − 12(α2 − ρ)

3k
. (3.31)

As a result, we conclude the following:
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Theorem 3.3. Let (M, g) be a general relativistic perfect fluid spacetime satisfying equation

(1.7) and admitting a Lorentzian Concircular structure. If the Concircular curvature tensor

satisfies Ç(U ,V)ξ = 0, then the pressure p is equal to 4λ+kσ−12(α2−ρ)
3k .

Definition 3.1. A second-order tensor ℓ is referred to as a parallel tensor if its covari-

ant derivative vanishes, i.e., ∇ℓ = 0, where ∇ represents the covariant derivative operator

associated with the metric tensor g.

Consider ℓ as a symmetric second-order tensor. It is said to be parallel if it satisfies∇ℓ = 0.

Employing the Ricci commutation identity, we proceed as follows:

∇2
U ,Vℓ(Z,W)−∇2

U ,Vℓ(W,Z) = 0. (3.32)

Accordingly, the resulting expression is:

ℓ(R(U ,V)Z,W) + ℓ(Z, R(U ,V)W) = 0. (3.33)

For arbitrary vector fields U ,V,Z,W on M, by assigning Z = W = ξ in equation (3.33), and

applying equation (3.27) along with the symmetry property of ℓ, we obtain:

2(λ+ σk)

3
[η(V)ℓ(U , ξ)− η(U)ℓ(V, ξ)] = 0. (3.34)

From equation(3.34), it follows that either λ = −σk, which is equivalent to σ = −λ
k or

η(V)ℓ(U , ξ)− η(U)ℓ(V, ξ) = 0. (3.35)

By inserting U = ξ in (3.35) and on simplification, we obtain:

ℓ(V, ξ) = −η(V)ℓ(ξ, ξ). (3.36)

The fact that ℓ is parallel, combined with equation (3.36), leads to the conclusion that ℓ(ξ, ξ)

is constant:

(∇Uℓ)(V, ξ) + ℓ(∇UV, ξ) + ℓ(V,∇Uξ)

= −{[g(∇UV, ξ) + g(V,∇Uξ)]ℓ(ξ, ξ) + η(V )[(∇Uℓ)(ξ, ξ) + 2ℓ(∇Uξ, ξ)]}. (3.37)

By considering ∇ℓ = 0 and by virtue of (3.36) in (3.37), we obtain:

ℓ(∇UV, ξ) + αℓ(V, ϕU) = −{[η(∇UV ) + αg(V, ϕU)]ℓ(ξ, ξ) + 2αη(V )ℓ(ϕU, ξ)}. (3.38)

By using (3.36) in (3.38) and by virtue of (2.13) and on simplification, we have:

ℓ(U, V ) = −g(U, V )ℓ(ξ, ξ). (3.39)

For any arbitrary vector fields U, V on M and assuming ℓ is parallel, it follows that ℓ(ξ, ξ)

remains constant. Therefore, we conclude the following:

Theorem 3.4. In a perfect fluid spacetime that is Concircularly flat and equipped with a

Lorentzian Concircular structure manifolds, the presence of a symmetric parallel tensor of

second order implies that either the condition λ = −σk is satisfied, or the tensor must be a

constant scalar multiple of the metric tensor g.
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If λ + σk ̸= 0 in equation (3.34), then Concircularly flat perfect fluid spacetime endowed

with a Lorentzian Concircular structure manifolds that admits a second-order symmetric

parallel tensor is a regular spacetime. Accordingly, we present the following corollary:

Corollary 3.1. In a Concircularly flat, regular perfect fluid spacetime endowed with a

Lorentzian Concircular structure, a second-order symmetric parallel tensor possesses the

same directional and symmetry characteristics as the metric tensor and is uniformly scaled

by a constant factor across the manifold. Hence, it is a constant multiple of the metric tensor

g.

4. Perfect fluid spacetime satisfying (ξ, ·)R ·Ric = 0 and Lorentzian

Concircular structure manifold

This section focuses on the analysis of a perfect fluid spacetime in Lorentzian Concircular

structure manifolds that fulfills the curvature condition (ξ, ·)R ·Ric = 0, which is equivalent

to the following [3]:

((ξ, U)R ·Ric)(V, Z) = ((ξ∧RU) ·Ric)(V,Z)

= Ric((ξ∧RU)V,Z) +Ric(V, (ξ∧RU)Z), (4.40)

where the curvature operator (U∧RV ) is defined by its action on a vector field Z as (U∧RV )Z =

R(U, V )Z. Utilizing this definition, equation (4.40) leads to:

Ric(R(ξ, U)V,Z) +Ric(V,R(ξ, U)Z) = 0. (4.41)

Inserting (1.7) in (4.41), we get(
2λ+ k(σ − p)

2

)
[g(R(ξ, U)V,Z) + g(V,R(ξ, U)Z)]

+(kσ + kp)[η(R(ξ, U)V )η(Z) + η(V )η(R(ξ, U)Z)] = 0. (4.42)

By substituting equations (2.16) and (2.17) into (4.42), we obtain the following expression:

(kσ + kp)(α2 − ρ)[g(U, V )η(Z) + g(U,Z)η(V ) + 2η(U)η(V )η(Z)] = 0. (4.43)

By replacing Z with ξ in equation (4.43), we obtain:

(α2 − ρ)(kσ + kp)[g(U, V ) + η(U)η(V )] = 0, (4.44)

we obtain σ = −p and (α2 − ρ) ̸= 0. Therefore, we can conclude the following:

Theorem 4.1. Let (M, g) be a perfect fluid spacetime in general relativity that admits a

Lorentzian Concircular structure and satisfies equation (1.7). If the curvature condition

(ξ, ·)R ·Ric = 0 holds, then the pressure p and energy density σ satisfy σ = −p.

5. Perfect fluid spacetime satisfying (ξ, ·)Ric ·R = 0 and Lorentzian

Concircular structure manifold

The current section is concerned with the perfect fluid spacetimes in Lorentzian Concir-

cular structure manifolds that satisfy the curvature condition (ξ, ·)Ric ·R = 0. This condition



Calculation(2025) 1(2):103–116/ GEOMETRIC STUDY OF RICCI SOLITONS ... 111

is equivalent to the following expression:

((ξ, U)Ric ·R)(V, Z)W = (ξ∧RicU)R(V, Z)W +R((ξ∧RicU)V,Z)W

+R(V, (ξ∧RicU)Z)W +R(V, Z)(ξ∧RicU)W, (5.45)

where (U∧RicV )Z = Ric(V,Z)U −Ric(U,Z)V. Rewriting the preceding relation, we obtain:

Ric(U,R(V,Z)W )ξ −Ric(ξ,R(V,Z)W )U +Ric(U, V )R(ξ, Z)W

−Ric(ξ, V )R(U,Z)W +Ric(U,Z)R(V, ξ)W −Ric(ξ, Z)R(V,U)W

+Ric(U,W )R(V, Z)ξ −Ric(ξ,W )R(V,Z)U = 0. (5.46)

Applying the inner product with the vector field ξ in equation (5.46), we obtain:

−Ric(U,R(V, Z)W )−Ric(ξ,R(V,Z)W )η(U) +Ric(U, V )η(R(ξ, Z)W )

−Ric(ξ, V )η(R(U,Z)W ) +Ric(U,Z)η(R(V, ξ)W )−Ric(ξ, Z)η(R(V,U)W )

+Ric(U,W )η(R(V, Z)ξ)−Ric(ξ,W )η(R(V, Z)U) = 0. (5.47)

Inserting (1.7) in (5.47), we get(
2λ+ k(σ − p)

2

)
[−g(U,R(V,Z)W )− η(R(V, Z)W )η(U) + g(U, V )η(R(ξ, Z)W )

−η(V )η(R(U,Z)W ) + g(U,Z)η(R(V, ξ)W )− η(Z)η(R(V,U)W ) + g(U,W )η(R(V, Z)ξ)

−η(W )η(R(V, Z)U)] + k(σ + p)[η(U)η(V )η(R(ξ, Z)W ) + η(V )η(R(U,Z)W )

+η(U)η(Z)η(R(V, ξ)W ) + η(Z)η(R(V,U)W ) + η(U)η(W )η(R(V, Z)ξ)

+η(W )η(R(V, Z)U)] = 0. (5.48)

By using (2.16), (2.17) in (5.48), we arrive at(
2λ+ k(σ − p)

2

)
[−g(U,R(V,Z)W ) + (α2 − ρ){2g(V,W )η(U)η(Z)

−2g(Z,W )η(U)η(V )− g(U, V )g(Z,W ) + g(U,Z)g(V,W )}]

+k(σ + p)(α2 − ρ)[g(U,Z)η(W )η(V )− g(U, V )η(W )η(Z)] = 0. (5.49)

By inserting Z = W = ξ in (5.49) and on simplification, we have

(α2 − ρ)[2λ− 2kp][g(U, V ) + η(U)η(V )] = 0. (5.50)

From the above equation, it follows that p = λ
k and (α2 − ρ) ̸= 0. Consequently, we present

the following result:

Theorem 5.1. Let (M, g) be a general relativistic perfect fluid spacetime satisfying equation

(1.7) and admitting a Lorentzian Concircular structure manifold. If the curvature condition

(ξ, ·)Ric ·R = 0 holds, then the pressure satisfies p = λ
k , provided that (α2 − ρ) ̸= 0.

6. Perfect fluid spacetime satisfying (ξ, ·)Ç ·Ric = 0 and Lorentzian

Concircular structure manifold

In this section, we investigate perfect fluid spacetimes admitting a Lorentzian Concircular

structure manifold that satisfy the condition (ξ, ·)Ç ·Ric = 0. This condition is equivalent to
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the following relation:

((ξ, U)Ç ·Ric)(V, Z) = ((ξ∧ÇU) ·Ric)(V,Z)

= Ric((ξ∧ÇU)V,Z) +Ric(V, (ξ∧ÇU)Z), (6.51)

where the operator (U∧ÇV ) acts on a vector field Z as (U∧ÇV )Z = Ç(U, V )Z. Reformulating

the preceding expression using this definition, we get:

Ric(Ç(ξ, U)V, Z) +Ric(V, Ç(ξ, U)Z) = 0, (6.52)

Inserting (1.7) in (6.52), we obtain:(
2λ+ kσ − kp)

2

)
[g(Ç(ξ, U)V,Z) + g(V, Ç(ξ, U)Z)]

+(kσ + kp)[η(Ç(ξ, U)V )η(Z) + η(V )η(Ç(ξ, U)Z)] = 0. (6.53)

By using (2.16), (2.17), and (2.19) in (6.53), we get:

(kσ + kp)

{
12(α2 − ρ)− [4λ+ k(σ − 3p)]

12

}
[g(U, V )η(Z) + g(U,Z)η(V )

+2η(U)η(V )η(Z)] = 0. (6.54)

Replacing Z by ξ in equation (6.54), gives the following result:

(kσ + kp)

{
12(α2 − ρ)− [4λ+ k(σ − 3p)]

12

}
[g(U, V ) + η(U)η(V )] = 0. (6.55)

Therefore, we arrive at two possibilities: either σ = −p or p = 4λ+kσ−12(α2−ρ)
3k . As a conse-

quence, we establish the following result:

Theorem 6.1. Let (M, g) be a general relativistic perfect fluid spacetime endowed with a

Lorentzian Concircular structure manifolds satisfying equation (1.7). If the condition (ξ, ·)Ç ·
Ric = 0 holds, then either σ = −p or p = 4λ+kσ−12(α2−ρ)

3k .

7. Perfect fluid spacetime satisfying (ξ, ·)Ric · Ç = 0 and Lorentzian

Concircular structure manifolds

In this section, we examine perfect fluid spacetimes in Lorentzian Concircular structure

manifolds satisfying the condition (ξ, ·)Ric·Ç = 0. This condition is equivalent to the following:

((ξ, U)Ric · Ç)(V, Z)W = (ξ∧RicU)Ç(V, Z)W + Ç((ξ∧RicU)V,Z)W

+Ç(V, (ξ∧RicU)Z)W + Ç(V, Z)(ξ∧RicU)W (7.56)

where (X∧RicY )Z = Ric(Y, Z)X −Ric(X,Z)Y.

The preceding equation can be expressed as:

Ric(U, Ç(V, Z)W )ξ −Ric(ξ, Ç(V, Z)W )U +Ric(U, V )Ç(ξ, Z)W

−Ric(ξ, V )Ç(U,Z)W +Ric(U,Z)Ç(V, ξ)W −Ric(ξ, Z)Ç(V,U)W

+Ric(U,W )Ç(V, Z)ξ −Ric(ξ,W )Ç(V, Z)U = 0. (7.57)
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Taking the inner product of equation (7.57) with ξ, we obtain:

−Ric(U, Ç(V, Z)W )−Ric(ξ, Ç(V, Z)W )η(U) +Ric(U, V )η(Ç(ξ, Z)W )

−Ric(ξ, V )η(Ç(U,Z)W ) +Ric(U,Z)η(Ç(V, ξ)W )−Ric(ξ, Z)η(Ç(V,U)W )

+Ric(U,W )η(Ç(V, Z)ξ)−Ric(ξ,W )η(Ç(V, Z)U) = 0. (7.58)

Inserting equation (1.7) into (7.58) gives:(
2λ+ k(σ − p)

2

)
[−g(U, Ç(V,Z)W )− η(Ç(V, Z)W )η(U) + g(U, V )η(Ç(ξ, Z)W )

−η(V )η(Ç(U,Z)W ) + g(U,Z)η(Ç(V, ξ)W )− η(Z)η(Ç(V,U)W ) + g(U,W )η(Ç(V, Z)ξ)

−η(W )η(Ç(V, Z)U)] + k(σ + p)[η(U)η(V )η(Ç(ξ, Z)W ) + η(V )η(Ç(U,Z)W )

+η(U)η(Z)η(Ç(V, ξ)W ) + η(Z)η(Ç(V,U)W ) + η(U)η(W )η(Ç(V,Z)ξ)

+η(W )η(Ç(V, Z)U)] = 0. (7.59)

By substituting equations (2.16), (2.17) and (2.19) into (7.59), we obtain:

−
(
2λ+ k(σ − p)

2

)
g(U, Ç(V,Z)W )

+

(
2λ+ k(σ − p)

2

){
12(α2 − ρ)− [4λ+ k(σ − 3p)]

12

}
[2g(V,W )η(U)η(Z)

−2g(Z,W )η(U)η(V )− g(U, V )g(Z,W ) + g(U,Z)g(V,W )]

+(kσ + kp)

{
12(α2 − ρ)− [4λ+ k(σ − 3p)]

12

}
[g(U,Z)η(W )η(V )

−g(U, V )η(W )η(Z)] = 0. (7.60)

By substituting Z = W = ξ in (7.60) and on simplification, we have

[2λ− 2kp]

{
12(α2 − ρ)− [4λ+ k(σ − 3p)]

12

}
[g(U, V ) + η(U)η(V )] = 0. (7.61)

Therefore, either p = λ
k or p = 4λ+kσ−12(α2−ρ)

3k . Hence, we present the following:

Theorem 7.1. Let (M, g) represent a general relativistic perfect fluid spacetime satisfying

(1.7), endowed with a Lorentzian Concircular structure manifold. If the condition (ξ, ·)Ric ·
Ç = 0 holds, then either p = λ

k or p = 4λ+kσ−12(α2−ρ)
3k .

8. Ricci solitons within perfect fluid spacetimes possessing a Lorentzian

Concircular structure manifold

This section explores Ricci solitons within the framework of a perfect fluid spacetime

endowed with a Lorentzian Concircular structure.

Consider the Ricci solitons equation:

Lξg + 2Ric+ 2ag = 0. (8.62)

Let g be a pseudo-Riemannian metric, Ric the Ricci tensor, ξ a vector field, and a a real

constant. A triple (g, ξ, a) that satisfies equation (8.62) is called a Ricci soliton on M. The

soliton is said to be shrinking, steady, or expanding depending on whether a is negative, zero,

or positive, respectively.
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From the Lie derivative, it follows that:

(Lξg)(U, V ) = g(∇Uξ, V ) + g(U,∇V ξ). (8.63)

By using (8.63) in (8.62), we obtain

Ric(U, V ) = −ag(U, V )− 1

2
[g(∇Uξ, V ) + g(U,∇V ξ)]. (8.64)

By contracting both sides of (8.64), we arrive at:

r = −a · dim(M)− div(ξ), (8.65)

where dim(M) denotes the dimension of the manifold M, and div(ξ) is the divergence of the

vector field ξ.

Let (M, g) be a spacetime representing a general relativistic perfect fluid with a Lorentzian

Concircular structure, and let (g, ξ, a) define a Ricci soliton on M. From equations (1.7) and

(8.64), we obtain: [
a+ λ+

k(σ − p)

2

]
g(U, V ) + k(σ + p)η(U)η(V )

+
1

2
[g(∇Uξ, V ) + g(U,∇V ξ)] = 0. (8.66)

By an orthonormal frame field ei substituting U = V = ei in (8.66) and by incorporating

the fluid parameters and the divergence of the vector field ξ, the soliton constant a takes the

form:

a = −λ− k(σ − 3p)

4
− div(ξ)

4
. (8.67)

Therefore, we present the following statement:

Theorem 8.1. A Ricci soliton (g, ξ, a), where a = −λ− k(σ−3p)
4 − div(ξ)

4 , is classified as steady

when p = 4λ
3k +

σ
3 +

divξ
3k ; it is expanding if p > 4λ

3k +
σ
3 +

divξ
3k , and shrinking if p < 4λ

3k +
σ
3 +

divξ
3k .

9. Conclusion

This investigation highlights the fundamental role of Ricci solitons in perfect fluid space-

times characterized by a Lorentzian Concircular structure and a Concircular curvature ten-

sor. Through a detailed analysis of the relationship between the soliton potential, energy-

momentum tensor, and the geometric properties of the manifold, we have identified essential

conditions for the existence and nature of Ricci solitons. The results impose meaningful

constraints on the curvature and topology of the spacetime, offering new perspectives on the

geometric behavior of relativistic fluids. These contributions not only strengthen the theo-

retical understanding of Ricci solitons but also expand their relevance within the framework

of general relativity.

Looking ahead, this study can be extended by examining Ricci solitons in more generalized

geometric environments, such as manifolds with torsion or non-metric connections. Further

research could also address the stability, evolution, and physical significance of Ricci solitons

in dynamic spacetimes. Incorporating numerical approaches and analyzing specific solutions

to Einsteins field equations may offer practical insights, enhancing the applicability of the

theoretical findings to problems in cosmology and gravitational physics.
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Abstract. In this study, the connection between statistical Cesaro summability as well as

sequence of statistical convergence within neutrosophic n-normed linear space (NnNLS) is

investigated. Although Cesaro summability along with its statistical variant within classical

normed spaces, fuzzy, intuitionistic fuzzy, and neutrosophic are covered in the literature,

this study is notable for both its methodology and its thorough approach, which covers a

wider range among spaces in addition explains the process beginning with the statistical

Cesaro summability concepts towards statistical convergence. The Tauberian theorems in

NnNLS will follow from these findings.
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1. Introduction

In 1965, Zadeh[23] initially presented the theory among fuzzy sets. He developed this the-

ory to deal with the idea of partial truth, in which truth values fall somewhere between being

entirely true and being entirely untrue. This strategy was especially helpful for handling

ambiguous or imprecise data, which conventional binary logic was ill-equipped to handle.

Atanassov[2], [3] introduced intuitionistic fuzzy set(IFS) theory in 1986. This theory adds

a degree among membership as well as a degree among non-membership to the usual fuzzy

set theory. Florentin Smarandache[18][19] introduced the concept of neutrosophic sets as to

extend of the IFS. The degree of indeterminacy and the neutrosophic set were established as

distinct components in his 1995 manuscript, which was published in 1998. Compared with

traditional fuzzy sets, this enables a representation of imprecision and uncertainty, which

makes it especially helpful in situations where judgments must take into account ambiguous

or incomplete data. Gunawan and Mashadi[9], Kim and Cho[13], Malceski[14], and other

researchers have looked at n-normed linear spaces. Vijayabalaji and Narayanan[21] defined
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a fuzzy n-normed linear space. Saadati and Park[17] introduced the concept of intuitionistic

fuzzy normed space. Many more authors have conducted research on generalised difference

sequence spaces. Jeyaraman et al.[10],[11] established the concepts of Logarithmic summa-

bility and Cesaro summability in neutrosophic n- normed linear spaces. Praveena et al.[16]

generalized the concept of Cesaro summability method in Neutrosophic Normed spaces using

the Tauberian conditions.

Our aim in this research is to introduce the idea of statistical summability theory in a neu-

trosophic n- normed linear spaces NnNLS. In the context of NnN, this work will assist us in

establishing Tauberian conditions which enable the shift beginning with the statistical Cesaro

summability towards statistical convergence among sequences. In order to accomplish this,

we provide the ideas among Cesaro as well as statistical Cesaro summability. Future research

into related Tauberian theorems in a NnNLS environment is made possible by these ideas.

2. Preliminaries

This phase contains some of the basic definitions in addition to the notation required for

the next section.

Definition 2.1. [10] The following axioms define a continuous t-norm as a binary operation

∗:[0,1]×[0,1]→ [0,1]

(i) ∗ is continuous, commutative and associative,

(ii) p∗1=p forevery p∈[0,1],
(iii) If p ≤ r and q ≤ s then p ∗ q ≤ r ∗ s, for each p, q, r, s ∈ [0, 1]

Definition 2.2. [10] The seven-tuple (U, µ̂, ν̆, ω̃, ∗, ⋄, ◦) is recognized as a NnNLS, where

U represents the space of vectors among dimensions that vary d ≥ n on the domain R, ∗
indicates a continuous t-norm, ⋄, and ◦ represent a continuous t-conorms, and µ̂, ν̆, and

ω̃ are fuzzy sets described on Un × (0,∞). In this context, µ̂ denotes the membership de-

gree, ν̆ denotes the non-membership degree and ω̃ indicates the degree of indeterminacy

for elements (s1, s2, . . . , sn, λ̂) ∈ Un × (0,∞). The following requirements are met for each

(s1, s2, . . . , sn, n) ∈ Un and s, λ̂ > 0:

(i) µ̂(s1, s2, . . . , sn, λ̂) + ν̆(s1, s2, . . . , sn, λ̂) + ω̃(s1, s2, . . . , sn, λ̂) ≤ 3;

(ii) µ̂(s1, s2, . . . , sn, λ̂) = 1, ν̆(s1, s2, . . . , sn, λ̂) = 0 and ω̃(s1, s2, . . . , sn, λ̂) = 0 for every

positive λ̂ iff s1, s2, . . . , sn are linearly dependent;

(iii) µ̂(s1, s2, . . . , sn, λ̂), ν̆(s1, s2, . . . , sn, λ̂) and ω̃(s1, s2, . . . , sn, λ̂) are not influenced by any par-

ticular arrangement of s1, s2, . . . , sn;

(iv) µ̂(s1, s2, . . . , csn, λ̂) = µ̂
(

s1, s2, . . . , sn,
λ̂
|c|

)
, ν̆(s1, s2, . . . , csn, λ̂) = ν̆

(
s1, s2, . . . , sn,

λ̂
|c|

)
and

ω̃(s1, s2, . . . , csn, λ̂) = ω̃
(

s1, s2, . . . , sn,
λ̂
|c|

)
if c ̸= 0, c ∈ F ;

(v) µ̂(s1, s2, . . . , sn, s) ∗ µ̂(s1, s2, . . . , s
′
n, λ̂) ≤ µ̂(s1, s2, . . . , sn + s

′
n, s+ λ̂);

(vi) ν̆(s1, s2, . . . , sn, s) ⋄ ν̆(s1, s2, . . . , s
′
n, λ̂) ≥ ν̆(s1, s2, . . . , sn + s

′
n, s+ λ̂);

(vii) ω̃(s1, s2, . . . , sn, s) ◦ ω̃(s1, s2, . . . , s
′
n, λ̂) ≥ ω̃(s1, s2, . . . , sn + s

′
n, s+ λ̂);

(vii) µ̂(s1, s2, . . . , sn, λ̂) : (0,∞) → [0, 1], ν̆(s1, s2, . . . , sn, λ̂) : (0,∞) → [0, 1] and

ω̃(s1, s2, . . . , sn, λ̂) : (0,∞) → [0, 1] are always continuous in λ̂;
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(viii) lim
λ̂→∞

µ̂(s1, s2, . . . , sn, λ̂) = 1 and lim
λ̂→0

µ̂(s1, s2, . . . , sn, λ̂) = 0 ;

(ix) lim
λ̂→∞

ν̆(s1, s2, . . . , sn, λ̂) = 0 and lim
λ̂→0

ν̆(s1, s2, . . . , sn, λ̂) = 1.

(ix) lim
λ̂→∞

ω̃(s1, s2, . . . , sn, λ̂) = 0 and lim
λ̂→0

ω̃(s1, s2, . . . , sn, λ̂) = 1.

Definition 2.3. [22] Let (U, µ̂, ν̆, ω̃, ∗, ⋄, ◦) be NnNLS.

(i) The ŷ = ŷk a sequence in U is considered to converge with L̃ ∈ U under NnN (µ̂, ν̆, ω̃)n,

if ∀ ϱ̆ ∈ (0, 1), λ̂ > 0, and also s1, s2, . . . , sn−1 ∈ U, ∃ a natural number k0 in a way

µ̂(s1, s2, . . . , sn−1, ŷk − L̃, λ̂) > 1− ϱ̆, ν̆(s1, s2, . . . , sn−1, ŷk − L̃, λ̂) < ϱ̆ and

ω̃(s1, s2, . . . , sn−1, ŷk − L̃, λ̂) < ϱ̆ ∀ k ≥ k0.

In order to indicate this convergence, (µ̂, ν̆, ω̃)n − lim ŷ = L̃ or ŷk
(µ̂,ν̆,ω̃)n→ L̃ as k → ∞.

(ii) The ŷ = ŷk a sequence within U is defined to be Cauchy in relation to NnN (µ̂, ν̆, ω̃)n,

if ∀ ϱ̆ ∈ (0, 1), λ̂ > 0 and also s1, s2, . . . , sn−1 ∈ U, ∃ a natural number k0 in a way that

µ̂(s1, s2, . . . , sn−1, ŷk − ŷm, λ̂) > 1− ϱ̆, ν̆(s1, s2, . . . , sn−1, ŷk − ŷm, λ̂) < ϱ̆ and

ω̃(s1, s2, . . . , sn−1, ŷk − ŷm, λ̂) < ϱ̆ for any k,m ≥ k0.

(iii) If all Cauchy sequences in U converge, then a NnNLS U is complete with regard to NnN

(µ̂, ν̆, ω̃)n.

Definition 2.4. Let (U, µ̂, ν̆, ω̃, ∗, ⋄, ◦) represent a NnNLS as well as V indicate any subset

of U. The set V is considered bound if ∃ ϱ̆ > 0 and λ̂0 > 0 are such that

µ̂(s1, s2, . . . , sn, λ̂0) > 1− ϱ̆, ν̆(s1, s2, . . . , sn, λ̂0) < ϱ̆ and ω̃(s1, s2, . . . , sn, λ̂0) < ϱ̆

for all s1, s2, . . . , sn ∈ V. We tell that the set V is p-bounded if lim
λ̂→∞

ΦV(λ̂) = 1 and

lim
λ̂→∞

ΨV(λ̂) = 0 and lim
λ̂→∞

φV(λ̂) = 0 where

ΦV(r) = inf{µ̂(s1, s2, . . . , sn, r̂) : s1, s2, . . . , sn ∈ V};
ΨV(r) = sup{ν̆(s1, s2, . . . , sn, r̂) : s1, s2, . . . , sn ∈ V}
φV(r) = sup{ω̆(s1, s2, . . . , sn, r̂) : s1, s2, . . . , sn ∈ V}.

Definition 2.5. Let V be subset of N. δ(V) = lim
n→∞

1

n
|{k ≤ n : k ∈ V}|, where |V| indicates

the cardinality of the set V and determines the natural density of V whenever the limit exists.

Definition 2.6. A sequence s = {sk} among numbers is assumed statistically(st)-convergent

to L̃, when ∀ ϱ̆ > 0, δ̆({k ∈ N : |sk − L̃| ≥ ϱ̆}) = 0. That a case, we represent st− lim s = L̃.

Definition 2.7. ([20]). Let (U, µ̂, ν̆, ω̃, ∗, ⋄, ◦) be NnNLS. The s = {sk} a sequence within

U is assumed st- convergent towards L̃ ∈ U in relation with NnN (µ̂, ν̆, ω̃)n, when for all

ϱ̆ ∈ (0, 1), λ̂ > 0 along with h1, h2, . . . ,hn−1 ∈ U,

δ̆({k ∈ N : µ̂(h1, h2, . . . ,hn−1, sk − L̃, λ̂) ≤ 1− ϱ̆,

ν̆(h1, h2, . . . ,hn−1, sk − L̃, λ̂) ≥ ϱ̆, ω̃(h1, h2, . . . ,hn−1, sk − L̃, λ̂) ≥ ϱ̆}) = 0. This is represented

by st(µ̂,ν̆,ω̃)n − lim s = L̃.

3. Statistical Cesaro summability in NnNLS

We begin by introducing the concept of Cesaro summability.

Definition 3.1. ([7]). Let {an} indicate a sequence within NnNLS (U, µ̂, ν̆, ω̃, ∗, ⋄, ◦). The

equation X̆n = 1
n+1

∑n
k=0 ak describes the arithmetic means (AM) X̆n among an. {an} is



120 P. JENIFER, M. JEYARAMAN, AND S. JAFARI

referred to be Cesaro summable towards a ∈ U when (µ̂, ν̆, ω̃)n− lim
m→∞

X̆m = a. Further, {an}

is indicated as a st Cesaro summable towards a ∈ U when st(µ̂,ν̆,ω̃)n − lim
m→∞

X̆m = a.

In a NnNLS under p-boundedness of sequence, the st Cesaro summability method is

regular, as demonstrate by the following theorem.

Theorem 3.1. Let {an} indicate a p-bounded sequence within a NnNLS (U, µ̂, ν̆, ω̃, ∗, ⋄, ◦).
If {an} converges statistically to a ∈ U, then {an} serves as a st Cesaro summable to U in

relation to NnN (µ̂, ν̆, ω̃)n.

Proof. Let {an} st converges towards a ∈ U and also assume that it is p-bounded. Put

s1, s2, . . . , sn−1 ∈ U. If ϱ̆ > 0, then there is T,T′ > 0 which means

infn∈N µ̂(s1, s2, . . . , sn−1, an, r̂) > 1− ϱ̆, supn∈N ν̆(s1, s2, . . . , sn−1, an, r̂) < ϱ̆, and

supn∈N ω̃(s1, s2, . . . , sn−1, an, r̂) < ϱ̆, for every r̂ > 2T.

Therefore, infn∈N µ̂
(

s1, s2, . . . , sn−1, a,
r̂
2

)
> 1 − ϱ̆, supn∈N ν̆

(
s1, s2, . . . , sn−1, a,

r̂
2

)
< ϱ̆ and

supn∈N ω̃
(

s1, s2, . . . , sn−1, a,
r̂
2

)
< ϱ̆ for every r̂ > 2T′.

Thus, the following inequalities are implied:

infn∈N µ̂(s1, s2, . . . , sn−1, an − a, r̂)

≥ min
{
infn∈N µ̂

(
s1, s2, . . . , sn−1, an,

r̂
2

)
, infn∈N µ̂

(
s1, s2, . . . , sn−1, a,

r̂
2

)}
> 1− ϱ̆,

supn∈N ν̆(s1, s2, . . . , sn−1, an − a, r̂)

≤ max
{
supn∈N ν̆

(
s1, s2, . . . , sn−1, an,

r̂
2

)
, supn∈N ν̆

(
s1, s2, . . . , sn−1, a,

r̂
2

)}
< ϱ̆

and

supn∈N ω̃(s1, s2, . . . , sn−1, an − a, r̂)

≤ max
{
supn∈N ω̃

(
s1, s2, . . . , sn−1, an,

r̂
2

)
, supn∈N ω̃

(
s1, s2, . . . , sn−1, a,

r̂
2

)}
< ϱ̆

∀ T > min{2T, 2T′}. Since an which is st- convergent towards U, we get that

δ̆(Nµ̂(ϱ̆, r̂)) = δ̆(Nν̆(ϱ̆, r̂)) = δ̆(Nω̃(ϱ̆, r̂)) = 0 for any r̂ > 0,

where

Nµ̂(ϱ̆, r̂) = {n ∈ N : µ̂(s1, s2, . . . , sn−1, an − a, r̂) ≤ 1− ϱ̆},
Nν̆(ϱ̆, r̂) = {n ∈ N : ν̆(s1, s2, . . . , sn−1, an − a, r̂) ≥ ϱ̆} and

Nω̃(ϱ̆, r̂) = {n ∈ N : ω̃(s1, s2, . . . , sn−1, an − a, r̂) ≥ ϱ̆}.
Describe the sets

D = {k ∈ N : k ∈ Nµ̂(ϱ̆, r̂)},D′ = {k ∈ N : k ∈ N c
µ̂(ϱ̆, r̂)}, and

E = {k ∈ N : k ∈ Nν̆(ϱ̃, r̂)},E′ = {k ∈ N : k ∈ N c
ν̆(ϱ̆, r̂)}, and

F = {k ∈ N : k ∈ Nω̃(ϱ̃, r̂)},F′ = {k ∈ N : k ∈ N c
ω̃(ϱ̆, r̂)}

which means |D|+ |E|+ |F| = n+1 = |D′|+ |E′|+ |F′|, in which | · | indicates the cardinality

among a set.

Therefore, D ∩ E ∩ F = ϕ = D′ ∩ E′ ∩ F′, we can determine. We determine that there is a

number n0 ∈ N which corresponds with the information above,

µ̂(s1, s2, . . . , sn−1, X̆n − a, r̂)

= µ̂

(
s1, s2, . . . , sn−1,

1

n+ 1

n∑
k=0

(ak − a), r̂

)
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= µ̂

s1, s2, . . . , sn−1,
∑
k∈Nµ̂

(ak − a) +
∑
k∈Nc

µ̂

(ak − a), (n+ 1)r̂


≥ min

µ̂

s1, s2, . . . , sn−1,
∑
k∈Nµ̂

(ak − a), |D|̂r

 , µ̂

s1, s2, . . . , sn−1,
∑
k∈Nc

µ̂

(ak − a), |D′ |̂r


≥ min

{
min
k∈Nµ̂

µ̂ (s1, s2, . . . , sn−1, (ak − a), r̂) , min
k∈Nc

µ̂

µ̂ (s1, s2, . . . , sn−1, (ak − a), r̂)

}

≥ min

{
inf
k∈Nµ̂

µ̂ (s1, s2, . . . , sn−1, (ak − a), r̂) , min
k∈Nc

µ̂

µ̂ (s1, s2, . . . , sn−1, (ak − a), r̂)

}
≥ min{1− ϱ̆, 1− ϱ̆}

= 1− ϱ̆

and also

ν̆(s1, s2, . . . , sn−1, X̆n − a, r̂)

≤ max

{
max
k∈Nν̆

ν̆(s1, s2, . . . , sn−1, (ak − a), r̂),max
k∈Nc

ν̆

ν̆(s1, s2, . . . , sn−1, (ak − a), r̂)

}
≤ max

{
sup
k∈Nν̆

ν̆(s1, s2, . . . , sn−1, (ak − a), r̂),max
k∈Nc

ν̆

ν̆(s1, s2, . . . , sn−1, (ak − a), r̂)

}
≤ ϱ̆

and

ω̃(s1, s2, . . . , sn−1, X̆n − a, r̂)

≤ max

{
max
k∈Nω̃

ω̃(s1, s2, . . . , sn−1, (ak − a), r̂),max
k∈Nc

ω̃

ω̃(s1, s2, . . . , sn−1, (ak − a), r̂)

}
≤ max

{
sup
k∈Nω̃

ω̃(s1, s2, . . . , sn−1, (ak − a), r̂),max
k∈Nc

ω̃

ω̃(s1, s2, . . . , sn−1, (ak − a), r̂)

}
≤ ϱ̆

for each r̂ > min{2T, 2T′} > 0 along with n ≥ n0. It implies that the set is as follows:

G =

{
n ∈ N : µ̂(s1, s2, . . . , sn−1, X̆n − a, r̂) ≤ 1− ϱ̆ or

ν̆(s1, s2, . . . , sn−1, X̆n − a, r̂) ≥ ϱ̆, ω̃(s1, s2, . . . , sn−1, X̆n − a, r̂) ≥ ϱ̆

}
containing, at most, a finite number of terms. The sequence an is st-Cesaro summable

towards U in relation to NnN (µ̂, ν̆, ω̃)n since a finite subset among natural numbers contains

zero density, as observed by the observation that δ̆(G) = 0. □

We demonstrate in the following example that the converse among Theorem (3.1) does

not necessarily have to be true.
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Example 3.1. Let bk =


1 + (−1)k + k2, if k = m2

1 + (−1)k − (k− 1)2, if k = m2 + 1

1 + (−1)k, otherwise,

, for m ∈ N.

be in NnNLS(U, µ̂, ν̆, ω̃, ∗, ⋄, ◦). At (U, µ̂, ν̆, ω̃, ∗, ⋄, ◦), the sequence (bk) is neither convergent

nor st-convergent. Furthermore, it is also not Cesaro summable.

To reach a limit, let’s use st-Cesaro summability. Cesaro means (ak) of sequence (bk) is

ak =

{
1 + 1

k

∑k
j=1(−i)j + k, if k = m2

1 + 1
k

∑k
j=1(−i)j , otherwise.

Sequence (ak) is st-convergent to 1 since for each r̂ > 0, we have

st(µ̂,ν̆,ω̃)n−lim µ̂(ak−1, r̂) = 1, st(µ̂,ν̆,ω̃)n−lim ν̆(ak−1, r̂) = 0 and st(µ̂,ν̆,ω̃)n−lim ω̃(ak−1, r̂) = 0

where

µ̂(ak − 1, r̂) =


r̂

r̂+| 1
k

∑k
j=1(−i)j+k|

, k = m2

r̂
r̂+| 1

k

∑k
j=1(−i)j |

, otherwise

ν̆(ak − 1, r̂) =


| 1
k

∑k
j=1(−i)j |

r̂+| 1
k

∑k
j=1(−i)j+k|

, k = m2

| 1
k

∑k
j=1(−i)j |

r̂+| 1
k

∑k
j=1(−i)j |

, otherwise

ω̃(ak − 1, r̂) =


| 1
k

∑k
j=1(−i)j+k|

r̂ , k = m2

| 1
k

∑k
j=1(−i)j |
r̂ , otherwise

Hence, sequence (bk) is st-Cesaro summable to 1 in (U, µ̂, ν̆, ω̃, ∗, ⋄, ◦)

4. Related Studies Lead to the Tauberian Theorems

The following lemma establishes homogeneity and additivity among the limit of statistical

within a NnNLS.

Lemma 4.1. Let (U, µ̂, ν̆, ω̃, ∗, ⋄, ◦) be a NnNLS and u = {uk}, v = {vk} be sequences in U.

After that, the given are true:

(i) When the limit of (µ̂, ν̆, ω̃)n-statistical among u indicate ξ̆, together with the (µ̂, ν̆, ω̃)n-

st-limit among v is ρ, after that the limit of (µ̂, ν̆, ω̃)n-statistical among the sum (u + v)

represent ξ̆ + ρ̇.

(ii) When the limit of (µ̂, ν̆, ω̃)n-statistical among u is ξ̆, along with α represent any real

number, after that the limit of (µ̂, ν̆, ω̃)n-statistical among αu is αξ̆.

Theorem 4.1. Let (U, µ̂, ν̆, ω̃, ∗, ⋄, ◦) be a NnNLS along with {an} denote a sequence within

U. When {an} is a st-Cesaro summable towards a in relation to NnN (µ̂, ν̆, ω̃)n, after that

X̆yn which is st-convergent towards a for every y > 0, That is st(µ̂,ν̆,ω̃)n − lim
n→∞

X̆yn = a, in

which yn = [yn].

Proof. Consider st(µ̂,ν̆,ω̃)n − lim
n→∞

X̆n = a. After that, for a sufficiently large N , follwed ϱ̆ > 0

together with put s1, s2, . . . , sn−1 ∈ U, the given sets are described:

κµ̂,X̆ (ϱ̆, r̂) = {k ≤ yN : µ̂(s1, s2, . . . , sn−1, X̆k − a, r̂) ≤ 1− ϱ̆},

κν̆,X̆ (ϱ̆, r̂) = {k ≤ yN : ν̆(s1, s2, . . . , sn−1, X̆k − a, r̂) ≥ ϱ̆},

κω̃,X̆ (ϱ̆, r̂) = {k ≤ yN : ω̃(s1, s2, . . . , sn−1, X̆k − a, r̂) ≥ ϱ̆},

κµ̂,X̆ y
(ϱ̆, r̂) = {k ≤ yN : µ̂(s1, s2, . . . , sn−1, X̆yk − a, r̂) ≤ 1− ϱ̆},
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κν̆,X̆ y(ϱ̆, r̂) = {k ≤ yN : ν̆(s1, s2, . . . , sn−1, X̆yk − a, r̂) ≥ ϱ̆},

κω̃,X̆ y(ϱ̆, r̂) = {k ≤ yN : ω̃(s1, s2, . . . , sn−1, X̆yk − a, r̂) ≥ ϱ̆}.

We then examine the cases given here.

Case 1: y > 1.

The case is easy to observe that κµ̂,X̆y
(ϱ̆, r̂) ⊆ κµ̂,X̆ (ϱ̆, r̂), κν̆,X̆ y(ϱ̆, r̂) ⊆ κν̆,X̆ (ϱ̆, r̂) and also

κω̃,X̆ y(ϱ̆, r̂) ⊆ κω̃,X̆ (ϱ̆, r̂) for every r̂ > 0. It suggests that which follows:

|κµ̂,X̆y
(ϱ̆, r̂)|

N + 1
=

y|κµ̂,X̆y
(ϱ̆, r̂)|

λ̂N + y
≤

y|κµ̂,X̆y
(ϱ̆, r̂)|

yN + 1
≤

y|κµ̂,X̆ (ϱ̆, r̂)|
yN + 1

|κν̆,X̆ y(ϱ̆, r̂)|
N + 1

= y|κν̆,X̆ y(ϱ̆, r̂)|
yN + y

≤
y|κν̆,X̆ y(ϱ̆, r̂)|

yN + 1
≤

y|κν̆,X̆ (ϱ̆, r̂)|
yN + 1

and

|κω̃,X̆ y(ϱ̆, r̂)|
N + 1

= y|κω̃,X̆ y(ϱ̆, r̂)|
yN + y

≤
y|κω̃,X̆ y(ϱ̆, r̂)|

yN + 1
≤

y|κω̃,X̆ (ϱ̆, r̂)|
yN + 1

By applying the mentioned inequalities, accordingly, we can establish that

δ̆(κµ̂,X̆y
(ϱ̆, r̂)) ≤ yδ̆(κµ̂,X̆ (ϱ̆, r̂)), δ̆(κν̆,X̆y

(ϱ̆, r̂)) ≤ yδ̆(κν̆,X̆ (ϱ̆, r̂)), and δ̆(κω̃,X̆y
(ϱ̆, r̂)) ≤ yδ̆(κω̃,X̆ (ϱ̆, r̂)).

Therefore, for each r̂ > 0, we obtain δ̆(κµ̂,X̆y
(ϱ̆, r̂)) = δ̆(κν̆,X̆y

(ϱ̆, r̂)) = δ̆(κω̃,X̆y
(ϱ̆, r̂)) = 0.

Consequently, we may show that st(µ̂,ν̆,ω̃)n − lim
n→∞

X̆yn = a.

Case 2: y ∈ (0, 1).

To conclude our case, we now demonstrate that the expression X̆n, in the sequence X̆yn , never

occurs beyond 1 + 1
y times.

Assume that for few p, q ∈ N, we get n = yp = ŷp+1 = ... = yp+q−1 < yp+q,

or similarly,

n ≤ yp < y(p+ 1) < ... < y(p+ q − 1) < n+ 1 ≤ y(p+ q).

Thus, we’ve been given n+ y(q − 1) < yp+ y(q − 1) = y(p+ q − 1) < n+ 1,

which gives y(q − 1) < 1, i.e., q < 1 + 1
y . According to this field, we get for any ϱ̆ > 0 and

also r̂ > 0 that
|κµ̂,X̆y

(ϱ̆,̂r)|
N+1 ≤

(
1 + 1

y

)
yN+1
N+1

|κµ̂,X̆ (ϱ̆,̂r)|
yN+1 ≤ 2(y+ 1)

|κµ̂,X̆ (ϱ̆,̂r)|
yN+1 and

|κν̆,X̆ y(ϱ̆,̂r)|
N+1 ≤

(
1 + 1

y

)
yN+1
N+1

|κν̆,X̆ (ϱ̆,̂r)|
yN+1 ≤ 2(y+ 1)

|κν̆,X̆ (ϱ̆,̂r)|
yN+1 also

|κω̃,X̆ y(ϱ̆,̂r)|
N+1 ≤

(
1 + 1

y

)
yN+1
N+1

|κω̃,X̆ (ϱ̆,̂r)|
yN+1 ≤ 2(y+ 1)

|κω̃,X̆ (ϱ̆,̂r)|
yN+1

for which N is large enough, such that (yn+1)
N+1 ≤ 2y.

Consequently, it follows that

δ̆(κµ̂,X̆y
(ϱ̆, r̂)) ≤ 2(y+ 1)δ̆(κµ̂,X̆ (ϱ̆, r̂))

δ̆(κν̆,X̆y
(ϱ̆, r̂)) ≤ 2(y+ 1)δ̆(κν̆,X̆ (ϱ̆, r̂)) and

δ̆(κω̃,X̆y
(ϱ̆, r̂)) ≤ 2(y+ 1)δ̆(κω̃,X̆ (ϱ̆, r̂)) correspondingly.

Considering that {X̆n} is st-convergent toward U,

δ̆(κµ̂,X̆ (ϱ̆, r̂)) = δ̆(κν̆,X̆ (ϱ̆, r̂)) = δ̆(κω̃,X̆ (ϱ̆, r̂)) = 0 for any r̂ > 0.

Therefore, ∀r̂ > 0, δ̆(κµ̂,X̆y
(ϱ̆, r̂)) = δ̆(κν̆,X̆ y(ϱ̆, r̂)) = δ̆(κω̃,X̆ y(ϱ̆, r̂)) = 0.

We have therefore also demonstrated that st(µ̂,ν̆,ω̃)n − lim
n→∞

X̆yn = a in this instance. □

Theorem 4.2. Let (U, µ̂, ν̆, ω̃, ∗, ⋄, ◦) indicate a NnNLS and let {an} be a sequence within

U. If {an} represents a st-Cesaro summable toward a in relation to NnN (µ̂, ν̆, ω̃)n. After
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that, st(µ̂,ν̆,ω̃)n − lim
n→∞

1

yn − n

yn∑
k=n+1

ak = a, for any y > 1 along with

st(µ̂,ν̆,ω̃)n − lim
n→∞

1

n− yn

n∑
k=yn+1

ak = a, for all 0 < y < 1.

Proof. Consider st(µ̂,ν̆,ω̃)n − lim
n→∞

X̆n = a. Select ι1, ι2 > 0 with a given ϱ̆ > 0 so that

max{r̂1, r̂2} < ϱ̆ and min{1− ι1, 1− ι2} > 1− ϱ̆. Next, define the following sets for each r̂ > 0

and a sufficiently large N :

κµ̂,X̆ (ι1, r̂) = {k ≤ N : µ̂(s1, s2, . . . , sn−1, X̆k − a, r̂) ≤ 1− ι1},

κν̆,X̆ (ι1, r̂) = {k ≤ N : ν̆(s1, s2, . . . , sn−1, X̆k − a, r̂) ≥ ι1},

κω̃,X̆ (ι1, r̂) = {k ≤ N : ω̃(s1, s2, . . . , sn−1, X̆k − a, r̂) ≥ ι1},

κµ̂,X̆ ,X̆y
(ι2, r̂) = {k ≤ N : µ̂(s1, s2, . . . , sn−1, X̆yk − X̆k, r̂) ≤ 1− r̂2},

κν̆,X̆ ,X̆y
(ι2, r̂) = {k ≤ N : ν̆(s1, s2, . . . , sn−1, X̆yk − X̆k, r̂) ≥ r̂2},

κω̃,X̆ ,X̆y
(ι2, r̂) = {k ≤ N : ω̃(s1, s2, . . . , sn−1, X̆yk − X̆k, r) ≥ r̂2}.

We now explain the cases listed here.

Case I: y > 1. Define the following sets for any r̂ > 0 and given ϱ̆ > 0:

κµ̂,J(ϱ̆, r̂) = {k ≤ N : µ̂(s1, s2, . . . , sn−1, Jn(w)− a, r̂) ≤ 1− ϱ̆},

κν̆,J(ϱ̆, r̂) = {k ≤ N : ν̆(s1, s2, . . . , sn−1, Jn(w)− a, r̂) ≥ ϱ̆},

κω̃,J(ϱ̆, r̂) = {k ≤ N : ω̃(s1, s2, . . . , sn−1, Jn(w)− a, r̂) ≥ ϱ̆},

in which Jn(w) =
1

yn−n

∑yn
k=n+1 ak for each n ∈ N.

For each y > 1 and also sufficiently large n ∈ N\{0} so that n < yn along with n ≥ 3y−1
y(y−1) ,

we get that for every r̂ > 0 along with s1, s2, . . . , sn−1 ∈ U,

µ̂

(
s1, s2, . . . , sn−1,

1

yn − n

yn∑
k=n+1

ak − a, r̂

)

= µ̂

(
s1, s2, . . . , sn−1,

yn + 1

yn − n

1

yn+1

yn∑
k=0

ak −
1

yn − n

n∑
k=0

ak − a, r̂

)

= µ̂

(
s1, s2, . . . , sn−1,

yn + 1

yn − n
X̆yn − yn + 1− yn + n

yn − n
X̆n − a, r̂

)
≥ min

{
µ̂

(
s1, s2, . . . , sn−1, X̆yn − X̆n,

r̂

2 yn+1

yn−n

)
, µ̂

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}

≥ min

{
µ̂

(
s1, s2, . . . , sn−1, X̆yn − X̆n,

(y− 1)r̂

4y

)
, µ̂

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}
= min

{
µ̂(s1, s2, . . . , sn−1, X̆yn − X̆n, r̂0), µ̂

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}
> min{1− ι2, 1− ι1}

> 1− ϱ̆
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and

ν̆

(
s1, s2, . . . , sn−1,

1

yn − n

yn∑
k=n+1

ak − a, r̂

)

= ν̆

(
s1, s2, . . . , sn−1,

yn + 1

yn − n

1

yn + 1

yn∑
k=0

ak −
1

yn − n

n∑
k=0

ak − a, r̂

)

= ν̆

(
s1, s2, . . . , sn−1,

yn + 1

yn − n
X̆yn − yn + 1− yn + n

yn − n
X̆n − a, r̂

)
≤ max

{
ν̆

(
s1, s2, . . . , sn−1, X̆yn − X̆n,

r̂

2 yn+1

yn−n

)
, µ̂

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}

≤ max

{
ν̆

(
s1, s2, . . . , sn−1, X̆yn − X̆n,

(y− 1)r̂

4y

)
, ν̆

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}
= max

{
ν̆
(

s1, s2, . . . , sn−1, X̆yn − X̆n, r̂0

)
, ν̆

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}
< max{ι2, ι1}

< ϱ̆,

and

ω̃

(
s1, s2, . . . , sn−1,

1

yn − n

yn∑
k=n+1

ak − a, r̂

)

= ω̃

(
s1, s2, . . . , sn−1,

yn + 1

yn − n

1

yn + 1

yn∑
k=0

ak −
1

yn − n

n∑
k=0

ak − a, r̂

)

= ω̃

(
s1, s2, . . . , sn−1,

yn + 1

yn − n
X̆yn − yn + 1− yn + n

yn − n
X̆n − a, r̂

)
≤ max

{
ν̆

(
s1, s2, . . . , sn−1, X̆yn − X̆n,

r̂

2 yn+1

yn−n

)
, µ̂

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}

≤ max

{
ω̃

(
s1, s2, . . . , sn−1, X̆yn − X̆n,

(y− 1)r̂

4y

)
, ω̃

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}
= max

{
ω̃
(

s1, s2, . . . , sn−1, X̆yn − X̆n, r̂0

)
, ν̆

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}
< max{ι2, ι1}

< ϱ̆,

where r̂0 =
r(y−1)

4y > 0. Therefore, we get for all r̂ > 0,

κc
µ̂,X̆ (ι1, r̂) ∪ κc

µ̂,X̆ ,X̆y
(ι2, r̂) ⊆ κcµ̂,J(ϱ̆, r̂),

κc
ν̆,X̆ (ι1, r̂) ∪ κc

ν̆,X̆ ,X̆y
(ι2, r̂) ⊆ κcν̆,J(ϱ̆, r̂),

κc
ω̃,X̆ (ι1, r̂) ∪ κc

ω̃,X̆ ,X̆y
(ι2, r̂) ⊆ κcω̃,J(ϱ̆, r̂)

or equivalently,

κµ̂,J(ϱ̆, r̂) ⊆ κµ̂,X̆ ,X̆y
(ι2, r̂) ∩ κµ̂,J(ι1, r̂),

κν̆,J(ϱ̆, r̂) ⊆ κν̆,X̆ ,X̆y
(ι2, r̂) ∩ κν̆,J(ι1, r̂),
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κω̆,J(ϱ̆, r̂) ⊆ κω̃,X̆ ,X̆y
(ι2, r̂) ∩ κω̃,J(ι1, r̂). (4.1)

For any r > 0 for which we take the asymptotic densities of both sides of (4.1), we get

0 ≤ δ̆(κµ̂,J(ϱ̆, r̂))

≤ δ̆(κµ̂,X̆ (ι1, r̂) ∪ κµ̂,X̆ ,X̆y
(ι2, r̂))

= δ̆(κµ̂,X̆ (ι1, r̂)) + δ̆(κµ̂,X̆ ,X̆y
(ι2, r̂))− δ̆(κµ̂,X̆ (ι1, r̂) ∩ κµ̂,X̆ ,X̆y

(ι2, r̂))

≤ δ̆(κµ̂,X̆ (ι1, r̂)) + δ̆(κµ̂,X̆ ,X̆y
(ι2, r̂))

0 ≤ δ̆(κν̆,J(ϱ̆, r̂))

≤ δ̆(κν̆,X̆ (ι1, r̂)) + δ̆(κν̆,X̆ ,X̆y
(ι2, r̂)) and

0 ≤ δ̆(κω̃,J(ϱ̆, r̂))

≤ δ̆(κzω̃, X̆ (ι1, r̂)) + δ̆(κν̆,X̆ ,X̆y
(ι2, r̂)).

Since {X̆n} is st-convergent towards a ∈ U,

δ̆(κµ̂,X̆ (ι1, r̂)) = δ̆(κν̆,X̆ (ι1, r̂)) = δ̆(κω̃,X̆ (ι1, r̂)) = 0 for every r̂ > 0. Therefore, {X̆yn} also

st-converges towards U.

Using the argument above, st(µ̂,ν̆,ω̃)n − lim
n→∞

(X̆yn − X̆n) = 0 is implied. Therefore, we get

δ̆(κµ̂,X̆ ,X̆y
(ι2, r̂)) = δ̆(κν̆,X̆ ,X̆y

(ι2, r̂)) = δ̆(κω̆,X̆ ,X̆y
(ι2, r̂)) = 0 ∀ r̂ > 0.

Now, we can determine that δ̆(κµ̂,J(ϱ̆, r̂)) = δ̆(κν̆,J(ϱ̆, r̂)) = δ̆(κω̃,J(ϱ̆, r̂)) = 0.

Therefore, st(µ̂,ν̆,ω̃)n − lim
n→∞

1

yn − n

yn∑
k=n+1

ak = a, for each y > 1.

Case II: y ∈ (0, 1).

The following sets should be described for any r̂ > 0 and given ϱ̆ > 0:

κµ̂,J(ϱ̆, r̂) = {k ≤ N : µ̂(s1, s2, . . . , sn−1, Jk(w)− a, r̂) ≤ 1− ϱ̆},

κν̆,J(ϱ̆, r̂) = {k ≤ N : ν̆(s1, s2, . . . , sn−1, Jk(w)− a, r̂) ≥ ϱ̆},

κω̃,J(ϱ̆, r̂) = {k ≤ N : ω̃(s1, s2, . . . , sn−1, Jk(w)− a, r̂) ≥ ϱ̆},

in which Jk(w) =
1

n−yn

∑yn
k=yn+1 ak for any n ∈ N.

For all sufficiently large n ∈ N\{0} together with 0 < y < 1 in a way that n > yn along with

n > 1
y , we get that ∀r̂ > 0 along with s1, s2, . . . , sn−1 ∈ U, that

µ̂

s1, s2, . . . , sn−1,
1

n− yn

yn∑
k=yn+1

ak − a, r̂


≥ min

{
µ̂

(
s1, s2, . . . , sn−1, X̆yn − X̆n,

r̂

2 yn+1

n−yn

)
, µ̂

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}
> min{1− ι2, 1− ι1}

> 1− ϱ̆
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and

ν̆

s1, s2, . . . , sn−1,
1

n− yn

yn∑
k=yn+1

ak − a, r̂


≤ max

{
ν̆

(
s1, s2, . . . , sn−1, X̆yn − X̆n,

r̂

2 yn+1

n−yn

)
, ν̆

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}

≤ max

{
ν̆
(

s1, s2, . . . , sn−1, X̆yn − X̆n, r̂1

)
, ν̆

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}
< max{ι2, ι1}

< ϱ̆,

and

ω̃

s1, s2, . . . , sn−1,
1

n− yn

yn∑
k=yn+1

ak − a, r̂


≤ max

{
ω̃

(
s1, s2, . . . , sn−1, X̆yn − X̆n,

r̂

2 yn+1

n−yn

)
, ω̃

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}

≤ max

{
ω̃
(

s1, s2, . . . , sn−1, X̆yn − X̆n, r̂1

)
, ω̃

(
s1, s2, . . . , sn−1, X̆n − a,

r̂

2

)}
< max{ι2, ι1}

< ϱ̆,

where r̂1 =
(1−y)̂r

4y > 0. Therefore, for all ι > 0, we obtain

κµ̂,J(ϱ̆, r̂) ⊆ κµ̂,X̆ ,X̆y
(ι2, r̂) ∪Kµ̂,J(ι1, r̂),

κν̆,J(ϱ̆, r̂) ⊆ κν̆,X̆ ,X̆y
(ι2, r̂) ∪Kν̆,J(ι1, r̂),

κω̃,J(ϱ̆, r̂) ⊆ κω̃,X̆ ,X̆y
(ι2, r̂) ∪ κω̃,J(ι1, r̂). (4.2)

For any r > 0 for which we assume the asymptotic densities among both sides of (4.2), we

get

0 ≤ δ̆(κµ̂,J(ϱ̆, r̂)) ≤ δ̆(κµ̂,X̆ (ι1, r̂)) + δ̆(κµ̂,X̆ ,X̆y
(ι2, r̂)),

0 ≤ δ̆(κν̆,J(ϱ̆, r̂)) ≤ δ̆(κν̆,X̆ (ι1, r̂)) + δ̆(κν̆,X̆ ,X̆y
(ι2, r̂)) together with

0 ≤ δ̆(κω̃,J(ϱ̆, r̂)) ≤ δ̆(κω̃,X̆ (ι1, r̂)) + δ̆(κω̃,X̆ ,X̆y
(ι2, r̂)).

Since {X̆n} is st-convergent toward a ∈ U, we obtain {X̆yn} is also st-convergent towards a.

According to the proof provided, st(µ̂,ν̆,ω̃)n − lim
n→∞

(X̆yn − X̆n) = 0.

Therefore, we get δ̆(κµ̂,J(ϱ̆, r̂)) = δ̆(κν̆,J(ϱ̆, r̂)) = δ̆(κω̃,J(ϱ̆, r̂)) = 0.

We can so demonstrate that st(µ̂,ν̆,ω̃)n − lim
n→∞

1

n− yn

n∑
yn+1

ak = a, for each y ∈ (0, 1). □

5. Conclusion

In this stydy, we extended classical Tauberian theorems to the framework of neutrosophic

n-normed linear spaces by employing the concept of statistical Cesaro summability. This
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integration offers a novel perspective for analyzing convergence behaviors within uncertain

and imprecise environments, which are effectively modeled using neutrosophic structures.

The established results not only generalize known theorems in normed linear spaces but also

provide a robust mathematical foundation for further applications in areas such as functional

analysis, information theory and decision-making under uncertainty. Future research can ex-

plore analogous results using other summability methods and extend the framework to more

generalized neutrosophic spaces, enriching the theoretical development of both summability

theory and neutrosophic analysis.
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normed spaces using two-sided Tauberian conditions. Journal of Algebraic Statistics, 13 (3), 1313-1323.

[17] Saadati, R., & Park, J. H. (2006). On the intuitionistic fuzzy topological spaces. Chaos, Solitons &

Fractals, 27, 331-344.

[18] Smarandache, F. (1998). Neutrosophy, neutrosophic probability, set and logic. Proquest Information &

Learning.

[19] Smarandache, F. (2005). Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. International

Journal of Pure and Applied Mathematics, 24, 287-297.
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Abstract. The main objective of the work is to examine the integrability of the derivative

formulae for the type-2 Bishop frame in three-dimensional Euclidean space. We use the

coordinate system introduced in [12], which allows for the examination of integration. As

an application, we analyze the position vectors of certain curves that are important in

mathematics and physical study.
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1. Introduction

The theory of curves has gone through a long period of development until it reaches a

truly modern manner: from the theory of plane curves, with the beginning of calculus, in

1684, the year in which Gottfried Wilhelm Leibniz created it in his Meditaito nova de natura

anguli contactus et osculi, to the theory of space curves, reached to the peak point with

the infinitesimal calculus. In this development, we have to mention two important things.

The first one is the notion of moving frame, as we know it today, created by Gaston Dar-

boux. The second one is the term binormal mentioned in a treatise on space curves by Barre

de Saint-Venant. The Frenet frame is a well-known example of a moving frame utilized to

describe a space curve in three-dimensional ambient spaces, including Euclidean and Lorentz-

Minkowski spaces. The Frenet equations, or Frenet formulae, were first proposed in 1831 by

Karl Eduard Senff and Johann Martin Bartels, enhancing the simplicity and utility of the

theory of space curves. The scientists were once again discussed in Jean Frederic Frenet’s

thesis in 1847, published in 1852. Shortly thereafter, those equations were independently dis-

covered by Joseph Alfred Serret in 1851 and are sometimes referred to as the Frenet-Serret

equations (for more information at this early stage in history, , see [7]). On the other hand,

mathematicians have done a great number of surveys involving the concept of binormal. But

it was not until 2010 that the survey of the first moving frame established by the binormal

was published by Yılmaz and Turgut. The authors were the first to create the idea of the
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moving frame in a more novel manner than usual in their ”A new version of Bishop frame

and an application to spherical images.” The main principle is that they do this using a

common vector field as the binormal vector field of Frenet-Serret frame (for details, see [9]).

Later, an analogue of this survey is done in Lorentz-Minkowski 3-space. [8, 10]

The determination of the position vector field of a smooth curve with a certain prop-

erty—that is, a slant helix, where the principal normal vector field forms a constant angle

with a fixed straight line—was investigated in 2010 by Ali and Turgut. They discovered

a third-order vector differential equation. By solving the vector differential equation, they

obtained the position vector field of a timelike slant helix in Minkowski space, where the

straight line is parallel to e3 [1]. Refer to [2] for slant helices in Euclidean 3-space. In

2011, researchers conducted analogous investigations to ascertain the position vector field of

a generic helix using both the Frenet and standard frames in Euclidean three-dimensional

space [3]. Refer to [4, 5] for timelike and spacelike generic helices in Minkowski 3-space.

In the past two decades, the problem of determining the position vectors has emerged

as an attractive field of study. In recent years, Yerlikaya and his coauthor [12, 13] have

approached this problem from a different perspective than those mentioned in the literature.

This approach is based on a new coordinate system that will facilitate the integrability of

derivative formulas of the Bishop frame. Inspired by these studies, we focus on that of the

type-2 Bishop frame and examine the position vector field of several special curves.

2. Preliminaries

When the real vector space R3 is endowed with the standard flat metric, known as the

Euclidean metric, represented by g = dx21 + dx22 + dx23, the corresponding space is known as

Euclidean space and denoted as E3, where (x1, x2, x3) constitutes the usual coordinate system

of E3. The norm of an arbitrary vector w ∈ E3 is defined as ∥u∥ =
√
g(u, u). Furthermore,

given two non-zero vectors a = (a1, a2, a3) and b = (b1, b2, b3) in E3, it is important to note

that the cross product of u and v is denoted as

a× b =

∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ .
Let γ : J → E3 be a smooth curve parametrized by the arbitrary parameter t, where J is

an open subset of R . The curve γ is referred as a unit speed curve parametrized by the arc

lenght s if its velocity vector γ′, the first derivative of the curve, fulfills the condition ∥γ′∥ = 1.

The parameter of γ shall hereafter be denoted as s. In Euclidean 3-space, the Frenet-Serret

frame along the curve γ, denoted by {t, n, b}, has the derivative formula expressed as t′

n′

b′

 =

 0 κ 0

−κ 0 τ

0 −τ 0


 t

n

b

 ,

where the curvature and the torsion functions of γ are denoted by κ and τ , respectively.
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The derivative formulae for the type-2 Bishop frame represented by {ζ1, ζ2, b} along γ are

as follows:  ζ ′1
ζ ′2
b′

 =

 0 0 −ϵ1

0 0 −ϵ2

ϵ1 ϵ2 0


 ζ1

ζ2

b

 , (2.1)

where ϵ1 and ϵ2 are the type-2 Bishop curvature functions of γ and ζ1, ζ2 are arbitrary unit

vector fields in E3. The geometric apparatus between the type-2 Bishop frame and the

Frenet-Serret frame, which we referred to before, is given by t

n

b

 =

 cos θ(s) − sin θ(s) 0

sin θ(s) cos θ(s) 0

0 0 1


 ζ1

ζ2

b

 , (2.2)

κ = −θp(s), τ =
√
ϵ21 + ϵ22, (2.3)

where θ(s) = arctan
(
ϵ1
ϵ2

)
. Note that the above apparatus differs from that of the study of

Yılmaz and Turgut [9]. By Eq. (2.3) and the angle θ, there exists the following theorem:

Theorem 2.1. [6] Let γ = γ(s) be a smooth curve with curvatures ϵ1 ̸= 0 and ϵ2 ̸= 0. γ is

a general helix if and only if type-2 Bishop curvatures of the curve satisfy

ϵ21(
ϵ21 + ϵ22

) 3
2

(
ϵ2
ϵ1

)p
= constant.

Remark 2.1. A necessary condition for the type-2 Bishop frame to exist at all points along a

curve is that the curvature of the curve should not be zero. If κ = 0, then the principal normal

vector field of the curve denoted by n becomes (0, 0, 0). This means that the binormal vector

field b becomes (0, 0, 0). This causes a contradiction in the fact that the system {ζ1, ζ2, b} is

orthogonal.

3. Conclusion

Let E3 endow the Euclidean 3-space and its basis beB = {e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1)}.
Let the coordinates of a vector relative to the basis B be {x1, x2, x3}. In [12], the authors

established an ordered orthonormal basis B′′ = {e′′1, e′′2, e′′3} and the corresponding new coor-

dinate system {x′′1, x′′2, x′′3} such that

e′′j =
e′′3×ei

∥e′′3×ei∥ , j = 1, 2 i = 1, 2, 3

(
e′′j × e′′3

)
=

{
−e′′2 , j = 1

e′′1 , j = 2.

Let γ : I → E3 be a smooth curve parameterized by arc length s, where s ∈ I, and its

type-2 Bishop apparatus {ζ1, ζ2, b, ϵ1, ϵ2} at the point γ(s). Let us consider an any curve
−
γ obtained from γ through a rigid motion, in such a way that the binormal vector field

−
b

at the point
−
γ(s0) of

−
γ aligns with e′′3. Consequently, due to this motion,

−
ζ1 and

−
ζ2 sit in

the plane defined by e′′1 and e′′2. The other vector fields of
−
γ are designated as

−
ζ1 and

−
ζ2,
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respectively. Consequently, it is appropriate to discuss the transition matrix between the

systems

{
−
ζ1,

−
ζ2,

−
b

}
and {e1′′, e2′′, e3′′}, which is structured as follows:

−
ζ 1
−
ζ 2
−
b

 =

 cosµ(s) − sinµ(s) 0

sinµ(s) cosµ(s) 0

0 0 1


 e′′1

e′′2
e′′3

 , (3.4)

where the angle between the vector fields
−
b and e′′3 denotes µ.

Furthermore, it is noteworthy that the rigid motion transforming
−
γ(s0) into γ(s0) and

−
ζ1,

−
ζ2,

−
b into ζ1, ζ2, b is, in fact, identical to the aforementioned rigid motion. Hence, we write

ζ1 =
−
ζ1, ζ2 =

−
ζ2, b =

−
b

for any s = s0.

By establishing i = 2 and j = 2 by the argument that e′′3 = b = (b1, b2, b3), we derive

e′′1 =
1√

1− b22

(
−b1b2, 1− b22,−b2b3

)
(3.5)

and

e′′2 =
1√

1− b22
(−b3, 0, b1) . (3.6)

Theorem 3.1. Let {e1′′, e2′′, e3′′} be the new ordered orthonormal basis obtained from the

natural ordered orthonormal basis of E3 and ϵ1(s), ϵ2(s) be differentiable functions, where s

belongs to an open interval in R. According to the new coordinate system, the binormal vector

field b = (b1, b2, b3) in an indirect solution triplet of Eq. (2.1), which is determined by Eqs.

(3.7) and (3.8) is given by

b1(s) = cos f1(s) cos f2(s)

b2(s) = sin f1(s)

b3(s) = cos f1(s) sin f2(s)

where

f1(s) = c1 +

∫
(cosµ(s) ϵ1(s) + sinµ(s) ϵ2(s)) ds, (3.7)

f2(s) = c2 +

∫
− sinµ(s) ϵ1(s) + cosµ(s) ϵ2(s))

cos f1(s)
ds (3.8)

and c1, c2 are constants.

Proof. Let {e1′′, e2′′, e3′′} be the new ordered orthonormal basis derived from the natural

ordered orthonormal basis in the Euclidean 3-space. Thus, Eqs. (3.5) and (3.6) are valid.

Using Eq. (3.4), a relationship between type-2 Bishop vector fields and the vector fields of
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the new system is appeared as

ζ1(s) = cosµ(s) e1
′′(s)− sinµ(s) e2

′′(s)

ζ2(s) = sinµ(s) e1
′′(s) + cosµ(s) e2

′′(s).
(3.9)

We will now compute the elements of the binormal vector field b(s). Substituting Eqs. (3.5)

and (3.6) into Eq. (3.9) and putting it into Eq. (2.1), we get

db1
ds

=
−1√
1− b22

[
{ cosµ(s) ϵ2 − sinµ(s) ϵ1} b3 + { cosµ(s) ϵ1 + sinµ(s) ϵ2} b1b2

]
(3.10)

db2
ds

= {cosµ(s) ϵ1 + sinµ(s) ϵ2}
√
1− b22, (3.11)

db3
ds

=
−1√
1− b22

[
{ sinµ(s) ϵ1 − cosµ(s) ϵ2} b1 + { cosµ(s) ϵ1 + sinµ(s) ϵ2} b2b3

]
(3.12)

Due to the fact that Eq. (3.11) is a type of separable equations, it is simpler to solve com-

pared to other equations, and as a result, the answer ends up being

b2 = sin

[
c1 +

∫
( cosµ(s) ϵ1 + sinµ(s) ϵ2) ds

]
︸ ︷︷ ︸

=f1(s)

. (3.13)

On the other hand, especially since Eqs. (3.10) and (3.12) are non-linear differential equa-

tions, it is beneficial to introduce a new variable g(s) rather than solving them directly, which

adheres to the following situation:

b21 + b22 + b23 = 1,

from which

b1 = cos f1(s) cos f2(s), b3 = cos f1(s) sin f2(s). (3.14)

Substituting Eqs. (3.13) and (3.14) into Eq. (3.10), we obtain

f2(s) = c2 +

∫
(− sinµ(s) ϵ1 + cosµ(s) ϵ2)

cos f1(s)
ds, (3.15)

which completes the proof.

□

The other important that this work will attain can be understood by finding its tangent

vector field for the position vector field of a curve. By the proposition that we have just

achieved, it may easily be calculated:

For this, we begin by getting the type-2 Bishop vector fileds ζ1 and ζ2. Substituting Eqs.

(3.5) and (3.6) into Eq. (3.9), for ζ1 = (ζ11 , ζ12 , ζ13) and ζ2 = (ζ21 , ζ22 , ζ23), we get

ζ11 = sinµ(s) sin f2(s)− cosµ(s) sin f1(s) cos f2(s) (3.16)

ζ12 = cosµ(s) cos f1(s) (3.17)
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ζ13 = − cosµ(s) sin f1(s) sin f2(s)− sinµ(s) cos f2(s) (3.18)

and

ζ21 = − sinµ(s) sin f1(s) cos f2(s)− cosµ(s) sin f2(s) (3.19)

ζ22 = sinµ(s) cos f1(s) (3.20)

ζ23 = cosµ(s) cos f2(s)− sinµ(s) sin f1(s) sin f2(s). (3.21)

From Eq. (2.2) taking into account ζ1 and ζ2, we have the following remark.

Remark 3.1. When referring to the position vector field, represented as γ, it is important

to remember the following equation:
dγ

ds
= t. (3.22)

With this relation, it is more convenient to perform the operation with the tangent vector

field than the binormal vector field. Referring to the proposition 3.1, we have the following

relations:

t1 =
−1√
ϵ21 + ϵ22

(
sin f1 cos f2 {ϵ2 cosµ− ϵ1 sinµ} − sin f2 {ϵ1 cosµ+ ϵ2 sinµ}

)

t2 =
cos f2√
ϵ21 + ϵ22

(
{ϵ2 cosµ− ϵ1 sinµ}

)
(3.23)

t3 =
−1√
ϵ21 + ϵ22

(
sin f1 sin f2 {ϵ2 cosµ− ϵ1 sinµ}+ cos f2 {ϵ1 cosµ+ ϵ2 sinµ}

)

4. Applications

Some remarkable curves share the characteristic that a vector field makes a constant an-

gle with a fixed line in space. In the type-2 Bishop frame, two curves exhibit the specified

property:

Inclined Curve: A smooth curve is classified as an inclined curve if the vector field ζ1 (or ζ2)

within its osculating plane forms a constant angle with a fixed line in space. It is analyti-

cally defined by the constancy of the ratio of Bishop curvatures ϵ1 and ϵ2, as presented by

Özyılmaz in the Euclidean 3-space E3. [6].

Darboux Helix: A smooth curve is classified as a Darboux helix if the Darboux vector

w = −ϵ2ζ1 + ϵ1ζ2 makes a constant angle with a fixed line in space. The curvatures ϵ1

and ϵ2 of a Darboux helix adhere to the subsequent equation:(
ϵ21 + ϵ22

) 3
2

ϵ21

1(
ϵ2
ϵ1

)p = constant (4.24)

[11]. In Eq. (4.24), remark that the ratio ϵ2
ϵ1

must not be constant. According to the theorem

(2.1), an inclined curve is a general helix, but not a Darboux helix.
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A new coordinate system is presented in the preceding section, facilitating the integrabil-

ity of the derivative formulas for the type-2 Bishop frame. This results in a theorem that

demonstrates only one of the triplets of the indirect solutions of Eq. (2.1). In this section, we

examine the necessary conditions for the indirect solution to achieve stability. Alternatively,

we assess the nature of the integration measure.

It is widely recognized that the curvatures of a curve remain constant until a rigid motion

is encountered. Consequently, the type-2 Bishop curvatures
−
ϵ1 and

−
ϵ2 of

−
r must satisfy the

subsequent conditions:

ϵ1 =
−
ϵ1, ϵ2 =

−
ϵ2,

where ϵ1 and ϵ2 are the type-2 Bishop curvature functions of r.

From the theorem (3.1), we have Eqs. (3.16) and (3.19) mentioned the previous section.

Consequently, we seek to determine the curvatures
−
ϵ1 and

−
ϵ2, respectively. By differentiating

Equation (3.16) with regard to s, we obtain

−
ϵ1 =

√(
dµ

ds
− sin f1

df2
ds

)2

+ ϵ21. (4.25)

Similarly, it is evident that another curvature is represented by

−
ϵ2 =

√(
dµ

ds
− sin f1

df2
ds

)2

+ ϵ22. (4.26)

Lemma 4.1. Let γ(s) be a curve in the Euclidean 3-space and let s be its arc length parame-

ter. Assume that the differentiable functions ϵ1(s) and ϵ2(s) be the type-2 Bishop curvatures

of γ. If the following relation holds

dµ

ds
− sin f1(s)

df2
ds

= 0, (4.27)

then there exist ”steady” solutions satisfying Eq. (2.1), where f1(s) and f2(s) are given by

Eqs. (3.7) and (3.8), respectively.

Based on Lemma 4.1, we can examine two possible situations.

Case 1: Assuming µ = constant, Eq. (4.27) is simplified to

sin f1(s)
df2
ds

= 0. (4.28)

Suppose that sin f1(s) equals zero. Thus, we have f1 = 0 or f1 = 2πk, k ∈ Z. Conse-

quently, the integrand in Eq. (3.7) may be considered as

cosµ ϵ1(s) + sinµ ϵ2(s) = 0. (4.29)
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The following statements are deduced from the last equality.

• when sinµ = 0 (or cosµ = 0), we have ϵ1 = 0 (or ϵ2 = 0). This never occurs.

• If sinµ ̸= 0 and cosµ ̸= 0, the resulting position vector field is an inclined curve with

ϵ2
ϵ1

= − cotµ.

Note that the function f2(s) can be determined from the aforementioned relation using

Eq.(4.29), specifically f2(s) = c2 +
−1
sinµ

∫
ϵ1(s) ds. Furthermore, when the position vector

field refers to an inclined curve, its straight line can determine d = (a, b, c) with the help of

Eq. (3.16):

⟨ζ1, d⟩ = − cosµ b+ sinµ {a sin f2(s)− c cos f2(s)}

The concept of inclined curves indicates that the necessary and sufficient condition for the

previous inner product to remain constant is the achievement of the following relations.

a sin f2(s)− c cos f2(s) = 0,

b = ±1.

Hence, we obtain d = (0,±1, 0). This provides knowledge about the plane where the straight

line is spanned.

In light of this information, the position vector field of an inclined curve having a straight

line spanned by e2 is computed using Eq.(3.23) as the following:

γ(s) = (d1, d2s, d3) , (4.30)

where di (i = 1, 2, 3) is a constant of integration. The last equality expresses to us that the

above position vector field is a geodesic, which gives rise to a contradiction with the creation

of the type-2 Bishop frame according to Remark 2.1.

Let df2
ds = 0. Thus, it is evident that f2 = constant. Hence, the integrand in Eq. (3.8) is

− sinµ ϵ1(s) + cosµ ϵ2(s) = 0. (4.31)

The following statements are deduced from the last equality.

• when cosµ = 0 (or sinµ = 0), we have ϵ1 = 0 (or ϵ2 = 0). This never occurs.

• If sinµ ̸= 0 and cosµ ̸= 0, the resulting position vector field is an inclined curve with

ϵ2
ϵ1

= tanµ.

Using Eq.(4.29), we can get the function f1(s) as follows: f1(s) = c1 +
1

cosµ

∫
ϵ1(s) ds. Also,

if the position vector field corresponds to an inclined curve, its straight line may compute

d = (a, b, c) with the help of Eq. (3.16).

⟨ζ1, d⟩ = cosµ sin f1 {−a cosm− c sinm} − cosµ cos f1 b+ sinµ {a sinm− c cosm} ,

where m depends on the constantity of f2. From the definition of inclined curves, the

previously mentioned dot product remains constant if and only if the subsequent relations
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are satisfied.:

a cosm+ c sinm = 0,

a sinm− c cosm = 1,

b = 0,

from which we get d = (sinm, 0,− cosm). This provides details about the plane where the

straight line is located.

Similarly, it is easy to see the position vector field of an inclined curve having a straight

line spanned by e1 and e3 as the following:

γ(s) = (sinm s, d1, cosm s) .

This causes a contradiction for the same reason. Thus, we have the following result:

Corollary 4.1. There does not exist any inclined curve with the type-2 Bishop curvatures

ϵ1(s) and ϵ2(s) in E3.

For the last one, we have

Case 2: When µ is not constant, three subcases emerge as

• f1 = constant, f2 = constant

• f1 ̸= constant, f2 = constant

• f1 = constant, f2 ̸= constant

Upon analyzing the first two items, we identify a contradiction with the claim that

µ ̸= constant. As a result, these subcases do not happen. We will now analyze the last

item.

By the constancy of the function f1, we have the following.

cosµ(s)ϵ1(s) + sinµ(s)ϵ2(s) = 0. (4.32)

Combining the previous equation and Eq. (3.8), we get the function f1 as

c2 +
−1

n

∫ √
ϵ21(s) + ϵ22(s) ds, (4.33)

where n = cos c1. Hence, Eq. (4.27) becomes

dµ

ds
+m

√
ϵ21(s) + ϵ22(s) = 0, (4.34)

from which we get

µ(s) = −m

∫ √
ϵ21(s) + ϵ22(s) ds, (4.35)

where m =
√
1−n2

n . From Eqs. (4.32) and (4.35), we obtain

m =
ϵ21

(
ϵ2
ϵ1

)p

(
ϵ21 + ϵ22

) 3
2

. (4.36)
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Since the ratio of ϵ2(s) to ϵ1(s) is non-constant due to Eq. (4.32), we have m ̸= 0. Therefore,

Eq. (4.36) is

1

m
=

(
ϵ21 + ϵ22

) 3
2

ϵ21

1(
ϵ2
ϵ1

)p = constant.

By substituting Eqs. (4.32) and (4.33) into Eq. (3.23) with the help of Eq. (4.24), we get

the position vector of a Darboux helix.

Proposition 4.1. Let γ be a Darboux helix in E3 and ϵ1(s), ϵ2(s) be its type-2 Bishop

curvatures. Thus, its position vector field is calculated:

γ(s) =

(
−
√
1− n2

∫
cos

(
c2 +

∫
p(s) ds

)
ds+ d1, ns+ d2,

−
√
1− n2

∫
sin

(
c2 +

∫
p(s) ds

)
ds+ d3

)
,

where p(s) = −1
n

∫ √
ϵ21(s) + ϵ22(s)ds and n ̸= 1, c2 and di for i = 1, 2, 3 are constant.

Example 4.1. Substituting ϵ1 (s) = tan
(
arcsin s

5

)
and ϵ2 (s) = 1 in Proposition 4.1, we get

the position vector of Darboux helix in the sense of type-2 Bishop frame as follows:

r(s) =

(√
26

26
s+ d1,

5√
26

∫
cos

[
c2 −

√
26 arcsin

s

5

]
ds+ d2,

5√
26

∫
sin

[
c2 −

√
26 arcsin

s

5

]
ds+ d3

)
.

Plotting for d1 = d2 = d3 = c2 = 0, we have the following figure.

Figure 1. The Darboux helix with k1(s) = tan(arcsinms), k2(s) = 1 for m = 1
5

Remark 4.1. Taking n = 1 in the aforementioned statement shows that the position vector of

the Darboux helix is expressed as Eq. (4.30). In light of theorem 2.1, we derive the following

corollary based on result 4.1.
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Corollary 4.2. A Darboux helix with the type-2 Bishop curvature functions ϵ1(s) and ϵ2(s)

in E3 is a general helix, vice versa.

Remark 4.2. This study examines the outcomes when i = 2. The geometric interpretation

of the results for i = 1 and i = 3 refers to the displacement of the components of the curve.
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