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A STUDY ON THE TOPOLOGY OF GRAPH COMPLEXES

ALPER ÜLKER ID ∗

Abstract. In this paper, we consider the homotopy types of independence complexes

of some graphs. Moreover, we study the homotopy types of graphs which are expanded

from a given graph via certain operations. For any graph whose independence complex

is contractible, we calculate the homotopy type of clique complex of its central graph. In

addition to these, we build a complex from a bipartite graph to calculate homotopy types

of some complexes.
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1. Introduction

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). A set

S ⊆ V (G) is called independent set if any two vertices x and y in S are non-adjacent in

G. The independence complex of a simple undirected graph G is the simplicial complex

whose simplices are the independent sets of G. It is denoted by Ind(G). If any two edges in

M ⊆ E(E) are non-adjacent, then M is called a matching. The matching complex M(G) of a

graph G is a simplicial complex with vertices are the edges of G and faces are the matchings

of G. The clique complex ∆(G) of a graph G is the simplicial complex whose vertex set is the

vertices of G and faces are the cliques of G. The independence complex of a graph G is the

clique complex of its complement. Also, the independence complex of the line graph of G is

the matching complex of G. These arguments justify the study of independence complexes

of graphs in relation to their clique and matching complexes. Numerous papers have been

written on the topic of independence complexes of graphs from an algebraic perspective

[8, 9, 16], and topological perspective [1, 5, 6, 7, 10, 11]. Main studies about the complexes

arising from the graphs are to determine the its homotopy types.

In [13], D. Kozlov calculated homotopy types of independence complexes of cycle and path

graphs. Engström studied the homotopy types of claw-free graphs [6]. In [11], Kawamura

investigated homotopy types of independence complexes of chordal graphs. Ehrenborg and

Hetyei studied the independence complexes of forests [5]. In [4], Csorba investigated the
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homotopy types of independence complexes of graphs whose edges are subdivided. Jonsson

proved that the independence complexes of bipartite graphs have the same homotopy type

as those of the suspensions of simplicial complexes [10]. Also, in [1] Barmak introduced a

notion called star cluster and provided a novel tool to study the topology of independence

complexes. Many of our proofs are based on this notion. In addition to these, many authors

studied the face enumeration of independence complexes [9, 12].

In this paper, we deal with graph complexes such as independence, clique and matching

complexes. The paper is organized as follows: Section 2 focuses on fundamental definitions

and previously established results that will serve as the foundation for the remainder of the

paper. In Section 3, we study the topology of Lozin transformation of a graph. Also, we

computed the homotopy types of the clique complex of central graphs for any contractible

graph. In the last section, we introduced a complex arising from a bipartite graph and

calculated homotopy types of some complexes arising from bipartite graphs.

2. Preliminaries

Given a graph G = (V,E), the set NG(u) = {v ∈ V (G) : uv ∈ E(G)} is called the open

neighborhood of u in G and NG[u] = NG(u) ∪ {u} is called the closed neighborhood of u.

The induced subgraph of G on S ⊆ V (G) is the graph consists of vertex set V (S) and two

vertices in S are adjacent if and only if they are adjacent in G, this subgraph is denoted by

G[S]. The subgraph G\U is obtained by deleting the vertices of U and remove all the edges

connecting the vertices of U . A complete graph Kn on n vertices is a graph in which for every

vertices u and v, there is an edge uv in Kn.

A finite (abstract) simplicial complex ∆ on the vertex set V (∆) is a collection of subsets

of V (∆) which satisfies; σ ∈ ∆ and γ ⊆ σ, then γ ∈ ∆. The elements of ∆ are called faces or

simplices. The maximal faces of ∆ with respect to inclusion are called facets. The dimension

of a face σ of ∆ is defined by dim(σ) =| σ | −1.

The k-skeleton of a simplcial complex ∆ is a simplicial complex which consisting of i-

simplices of ∆ with i ≤ k.

A subcomplex ∆′ of a complex ∆ is called an induced subcomplex of ∆; if σ ∈ ∆ and

σ ⊆ V (∆′), then σ ∈ ∆′. The induced subcomplex of ∆ on U ⊆ V (∆) is denoted by ∆[U ].

Let ∆ and Γ are simplicial complexes with disjoint vertex sets. Then the join of ∆ and Γ is

the simplicial complex whose faces consists of σ ∪ τ such that σ ∈ ∆ and τ ∈ Γ. The join of

∆ and Γ is denoted by ∆ ∗ Γ.
Next we give definitions of star, link and deletion of a face of a simplicial complex.

Definition 2.1. If σ is a face of ∆, then the link, deletion and star of σ are defined as

follows:

lk∆(σ) = {τ ∈ ∆ : σ ∪ τ ∈ ∆, σ ∩ τ = ∅} is called link of σ,

del∆(σ) = {τ ∈ ∆ : σ ∩ τ = ∅} is called deletion of σ,

st∆(σ) = {τ ∈ ∆ : σ ∪ τ ∈ ∆} is called star of σ.

The definitions of link and deletion of a vertex x of a graph G can be translated for

independence complexes as follows:

lkInd(G)(x) = Ind(G\NG[x]) and delInd(G)(x) = Ind(G\x).
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In the following, the definitions of cone and suspension of a simplicial complex are given.

Definition 2.2. The cone C(∆) of a simplicial complex ∆ with apex v ∈ V (∆) is v ∗∆.

Definition 2.3. The suspension Σ(∆) of a simplicial complex ∆ is {u, v} ∗∆.

In the following, the definitions of independence complex, clique complex and matching

complex will be given.

Definition 2.4. Let G = (V,E) be a graph. The independence complex of G is the simplicial

complex on V whose faces are the independent sets of G and denoted by Ind(G).

Definition 2.5. Let G = (V,E) be a graph. The clique complex of G is the simplicial complex

on V whose faces are the cliques of G and denoted by ∆(G).

Definition 2.6. Let G = (V,E) be a graph. The matching complex of G is the simplicial

complex on V whose vertices are the edges and faces are the matchings of G. This complex

is denoted by M(G).

Definition 2.7. Let ∆ be a simplicial complex. ∆ is said to be a flag complex if and only if

every missing face of ∆ is of size two.

From the above definitions, the following proposition can be given.

Proposition 2.1. Let G be a simple undirected graph. Then the complexes Ind(G), ∆(G)

and M(G) are flag complexes.

Star cluster of a face is defined by Barmak in [1], we recall its definition in the following:

Definition 2.8. [1] Let σ be a simplex of a simplicial complex ∆. The star cluster of σ in

∆ as the subcomplex SC∆(σ) =
⋃

v∈σ st∆(v).

The following lemma is very important for the rest of the paper and proved in [1].

Lemma 2.1. (Theorem 3.6, [1]) Let G be a graph and let v ∈ G be a non-isolated vertex

which is contained in no triangle i.e. no two vertices of NG(v) are adjacent. Then NG(v) is

a simplex of Ind(G) and Ind(G) ≃ Σ(stInd(G)(v) ∩ SCInd(G)(NG(v))).

The next theorem is about the homotopy types of triangle-free graphs.

Theorem 2.1. (Theorem 3.5,[1]) Let G be a graph such that there exits a vertex v ∈ G which

is contained in no triangle. Then the independence complex of G has the homotopy type of a

suspension.

Remark 2.1. Let x be a vertex of a graph G which is contained in no triangle. Then the

faces of the simplicial complex stInd(G)(x)∩SCInd(G)(NG(x)) consist of the independent sets σ

such that σ∪{x} and σ∪{y} are independent for y ∈ NG(x). If the independent set σ consists

of only vertices in NG(y)\{x} for y ∈ NG(x), then σ is the boundary of (| σ − 1 |)-simplex

in stInd(G)(x) ∩ SCInd(G)(NG(x)).

Definition 2.9. A space X is called contractible, if X is homotopy equivalent to a point.

The next lemma is about homotopy types of the suspension of a contractible space.
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Lemma 2.2. [5] If ∆ is a contractible complex, then Σ(∆) is a contractible complex.

Proposition 2.2. [5, 15] The homotopy types of the suspension of wedge sum of spheres are

as follows;

Σ
(
Sk1 ∨ Sk2 ∨ ... ∨ Ski

)
≃ Sk1+1 ∨ Sk2+1 ∨ ... ∨ Ski+1.

3. Graph operations and its topology

In this section we study the topology of complexes of graphs expand from a graph via a

particular operation. The Lozin transformation of a graph is an operation when applied it

increases graphs induced matching number and introduced in [14]. The homotopy type of

independence complex of Lozin transformed graph studied by the authors in [2]. We study

this by the notion star cluster.

Definition 3.1. Let G be a graph and x be a vertex of G. The Lozin’s transformation Lx(G)

of G with respect to x is defined as follows:

(i) Partition the neighborhood NG(x) of the vertex x into two subsets Y and Z in arbitrary

way,

(ii) add a P4 = ({y, a, b, z}, {ya, ab, bz}) to the rest of the graph,

(iii) connect vertex y of the P4 to each vertex in Y , and connect z to each vertex in Z.

The following figure shows Lozin transformation of G with respect to vertex x. The parti-

tion was done with respect to vertex x, the edge uv forms the partition Y and vertices p and

w form the partition Z.

v

u

x

w

p

Figure 1. A graph G

v

u

y a b z

w

p

Figure 2. Lx(G)
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The Lozin transtormation expands a graph from one vertex. In the following theorem, we

give the homotopy type of the Lozin transformed graph by means of the original graph.

Theorem 3.1. ([2]) Let G be a graph and Lx(G) be its Lozin transformation with respect to

x. Then Ind(Lx(G)) is homotopy equivalent to Σ(Ind(G)).

Proof. Let Lx(G) be the Lozin transformation of G with respect to the vertex x. If we

partition NG(x) into two subsets namely Y and Z i.e. NG(x) = Y ∪ Z. Then the vertices a

and b are contained in no triangle, since y − a− b− z is a path. We prove this for a and by

symmetry it is similar for b. The complex IndLx(G)(N(a)) is the 1-simplex yb. It is enough

to show that stInd(Lx(G))(a) ∩ SCInd(Lx(G))(NLx(G)(a)) = Ind(G). Let σ ∈ stInd(Lx(G))(a) ∩
SCIndLx(G)

(NLx(G)(a)) be a maximal face. Then σ is a maximal independent set of Lx(G)

which can be extended to a and also can be extended to y or b. If σ ∪ {a} and σ ∪ {y} are

independent sets and σ ∪ {b} is not independent. Then σ ∪ {z} is an independent set. Thus

σ ∩ Y = ∅ and σ ∩ Z = ∅. If σ ∪ {a} and σ ∪ {b} are independent sets and σ ∪ {y} and

σ ∪ {z} are not independent. Then σ ∩ Y ̸= ∅ or σ ∩ Z ̸= ∅ or both. Thus one can conclude

that σ is a maximum independent set of Ind(G). Conversely, let σ ∈ Ind(G) be a maximum

independent set. If x ∈ σ then σ ∩NG(x) = ∅. So σ can be extended to a and y or σ can be

extended to a and b in Lx(G). Thus σ ∈ stInd(Lx(G))(a) ∩ SCInd(Lx(G))(NLx(G)(a)).

□

If a graph contains an induced path P4, then we can contract endpoints of P4 into one

vertex. In other words, we can reverse the Lozin operation of a graph if the graph has P4.

Corollary 3.1. Let G be a graph. If G has a subgraph P4 whose internal vertices are of degree

two and end vertices are not adjacent. Then Ind(H) is homotopy equivalent to Σ(Ind(G))

where H is formed by contracting the end vertices of P4 into one vertex.

Proof. The contraction of a P4 from end vertices into one vertex in a graph is clearly reversing

the Lozin operation. □

When applying the Lozin transformation to a graph G with respect to the vertex x, we

partition the vertex set of NG(x) into two disjoint sets Y and Z. However, the next theorem

states that if there exists a vertex t ∈ Y ∩ Z, then the Corrollary 3.1 still applies.

Figure 3. Adding P3 to any edge of a graph

Theorem 3.2. Let G be a graph and G′ is obtained by attaching a P3 by adding edges from

endpoints of P3 to endpoints of any edge from end vertices to make a C5. Then Ind(G′) ≃
Σ(Ind(G)).
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Proof. Let u−v−w be a path attached to the edge xy of a graph G. Then x−u−v−w−y is a

C5. So v is in no-triangle andNG(v) is a 1-simplex uw. So Theorem 3.1 implies that Ind(G′) ≃
Σ(stInd(G)(v)∩SCInd(G)(NG(v))). Now we show that stInd(G)(v)∩SCInd(G)(NG(v)) = Ind(G).

Let σ ∈ stInd(G)(v) ∩ SCInd(G)(NG(v)) be a face. Then σ is an independent set which can be

extended to independent set σ ∪ {v}. Also σ can be extended to σ ∪ {u} or σ ∪ {w} or both.

Thus σ ∈ Ind(G).

Now assume that σ ∈ Ind(G) is an independent set. If x ∈ σ and y /∈ σ then σ ∪ {v} and

σ∪{w} is independent. If x /∈ σ and y ∈ σ then σ∪{v} and σ∪{u} is independent. Suppose

that both x and y are not in σ. Then σ ∪ {v} and σ ∪ {u,w} are independent sets of G′.

Thus σ ∈ stInd(G)(v) ∩ SCInd(G)(NG(v)). Therefore stInd(G)(v) ∩ SCInd(G)(NG(v)) = Ind(G),

this completes proof. □

Example 3.1. Let Gn be the graph constructed by gluing cycles C5 as described in Figure

4. Then the homotopy type of Ind(Gn) can be calculated by Theorem 3.2. Thus Ind(Gn) ≃
Σn(S0) ≃ Sn.

G1 G2

G3

Figure 4. Ind(Gn)
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In the following we give the definition of central graph of an undirected simple graph. This

operation increases the number of vertices of the original graph.

Definition 3.2. Let G be a simple and undirected graph and let V (G) and E(G) are vertex

and edge sets of G, respectively. The central graph of G, denoted by C(G), is obtained by

subdividing each edge of G exactly once and joining all the non-adjacent vertices of G in

C(G).

a

b

c d

Figure 5. A graph G

Example 3.2. The graph depicted in Figure 6 is the central graph of G which is depicted in

Figure 5.

a

b

c d
x

z

y

t

Figure 6. Central graph of G
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Theorem 3.3. [3] Let ∆ be a simplicial complex with vertex V . If there exits a subset A ⊆ V

such that dim(∆[A]) = 0 and ∆[V \A] is contractible, then ∆ ≃
∨

x∈AΣ(lk∆(x)).

Proposition 3.1. Let G = (V,E) be a graph and C(G) be its central graph. If Ind(G) is

contractible, then ∆(C(G)) ≃
∨

|E(G)| S1.

Proof. Assume that S is the set of vertices added to V (G) when subdividing the edges. It is

clear that the complex ∆(C(G)[V \S]) is Ind(G). So it is contractible by assumption. Since

∆(C(G)[S]) is a discrete set of vertices, this implies that dim∆(C(G)[S]) = 0. Then, by

Theorem 3.3, one can decude that ∆(C(G)) ≃
∨

x∈S Σ(lk∆(C(G))(x)). In ∆(C(G)), for every

vertex x ∈ S, the complex lk∆C(G)(x) consists of two disjoint vertices, since they are adjacent

to vertices which form an edge in G. Thus lk∆(C(G))(x) ≃ S0 for every x ∈ S. Therefore we

have ∆C(G) ≃
∨

|E(G)| S1 by Proposition 2.2. □

In [11], the author stated that for each wedge
∨
Skt of finitely many spheres, there exists a

chordal graph G such that Ind(G) is homotopy equivalent to
∨

Skt for kt ≥ γ(G)− 1, where

γ(G) is the domination number of G. In the following theorem, spheres are 1-dimensional

and graph is arbitrary.

Theorem 3.4. For each
∨
S1 of finitely many 1-spheres, there exists a graph G such that

Ind(G) is homotopy equivalent to
∨
S1.

Proof. Our proof is based on the construction of a complex which has homotopy type
∨
S1

and homotopy equivalent to an independence complex of a graph. Assume that the number

of 1-spheres in the product S1 ∨ S1 · · · ∨ S1 equals to m. Let H be a graph consists of two

connected components; a vertex x and a path Pm+1. Since Ind(H) is a contractible graph

with m edges, then the clique complex of its central graph ∆(C(H)) is homotopy equivalent

to
∨

m S1 by Proposition 3.1. Therefore Ind(G) = ∆(C(H)) ∼=
∨

m S1 with G = C(H). □

Example 3.3. Given a graph P4 which is contractible, its central graph and complement

shown in Figure 7 and 8. So Ind(C(P4)) = ∆(C(P4)) is homotopy equivalent to S1 ∨S1 ∨S1.

Figure 7. Graph P4 and its central graph C(P4)
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Figure 8. Complement of C(P4).

4. Building a complex from a bipartite graph

A complex is homeomorphic to its barycentric subdivision and this subdivision is an in-

dependence complex of a graph. Thus it is a well-known fact that every simplicial complex

is homotopy equivalent to an independence complex Ind(G) of a graph G.

In [10], Jonsson defined a complex ΓG,V ⊆ 2V as follows:

Let G = V ∪W be a bipartite graph. A set σ ⊆ V belongs to ΓG,V if and only if there is a

vertex w ∈ W such that σ ∪ {w} is an independent set in G.

The following theorem states that the suspension of this complex is homotopy equivalent

to independence complex of bipartite graph G.

Theorem 4.1. [10] Let G be a bipartite graph with nonempty parts V and W . Then Ind(G) ≃
Σ(ΓG,V ).

From above arguments, we can define a simplicial complex on a bipartite graph B as

follows:

Definition 4.1. Let B be a bipartite graph with bipartition U and W . Then the simplicial

complex associated to this graph B is a complex whose vertex set is U and faces are the

subsets σ ⊆ U such that σ ∪ {v} is an independent set of B for some u ∈ W . This complex

is denoted by ∆B.

Remark 4.1. The complex Ind(B) is homotopy equivalent to Σ(∆B).

Proposition 4.1. If B = U ∪W is a complete bipartite graph Km,n, then ∆B is an empty

complex. Moreover, Ind(B) ≃ Σ(∆B) ≃ S0.

Proof. Since for any u ∈ U there exits no σ ⊆ W such that σ ∪ {u} is an independent set of

B, this implies that ∆B is an empty complex. From Proposition 2.17, one can conclude that

Ind(B) ≃ S0. □

Proposition 4.2. If the graph B consists of n disjoint edges, then ∆B is the boundary

complex of a (n− 1)-simplex and Ind(G) ≃ Sn−1.

Proof. Since, for any xi, the set {x1, x2, ..., x̂i, ..., xn}, obtained by omitting, forms a facet of

∆B, it follows that ∆B is the boundary complex of a (n− 1)-simplex. Then by Proposition

2.17, one can therefore conclude that Ind(G) ≃ Σ(∆B) ≃ Sn−1. □
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y1

x1 x2

y2 yn

xn

Figure 9. n disjoint edges

Definition 4.2. Let ∆ be a simplicial complex on vertex set V (∆). The Alexander dual of

∆ is the simplicial complex ∆∗ = {A ⊂ V (∆) : V (∆)\A /∈ ∆}.

a

bd

c

a

bd

c

Figure 10. A simplicial complex and its Alexander dual

In [4], Csorba showed that the independence complex of a graph whose edges are sub-

divided exactly once is homotopy equivalent to the suspension of Alexander dual of the

independence complex of that graph. In the next theorem, we will build a complex and give

its homotopy type. It provides a different method.

Theorem 4.2. ([4], Theorem 5) Let G2 be the edge subdivision of a graph G. Then the

independence complex of G2 has the same homotopy type of Σ(Ind(G)∗).

Proof. Let V (G) = X = {x1, ..., xm}. If the set {y1, y2, ..., ym} consists of the vertices added

to G when subdividing the edges, then we have V (G2) = V (G) ∪ {y1, y2, ..., ym}. If we

set Y = {y1, y2, ..., ym}, then G2 is a bipartite graph with bipartition G2 = X ∪ Y . Thus

∆G2 = {Fi ⊂ X : Fi ∪ {yi} is independent set for some yi ∈ Y }. Since V \Fi is an edge of G

and not a face of Ind(G). Therefore we have Ind(G2) ≃ Σ(Ind(G)∗). □

5. Conclusion

We use the star cluster notion to determine the homotopy types of complexes arising from

triangle-free graphs. We construct a complex from a bipartite graph which is a triangle-free

graph. Further studies may be a concern to construct new methodologies for other graph

complexes such as matching and clique complexes.
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