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Abstract. This paper examines the motion of particles governed by an action that

depends on the curvature and torsion of their trajectories in the Galilean 3-space G3. We

derive the Euler-Lagrange equation corresponding to the action H(γ) =
∫
γ

f(κ, τ)ds in

G3. We present examples to clarify the solutions of the system, clearly explaining their

properties and relevance. With examples specifically focusing on the natural Hamiltonian

problem derived from the Frenet frame of the curve and a generalization of these natural

Hamiltonians, we aim to illustrate their key features and underlying principles.
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1. Introduction

The study of particle motion governed by geometric properties such as curvature and tor-

sion provides an understanding of underlying physical and mathematical principles. The

interplay between curvature and torsion in defining particle trajectories has long been a

subject of interest in both classical mechanics and modern theoretical studies. These geo-

metric properties not only characterize the shape and behavior of curves in space but also

play a critical role in variational principles, where the goal is often to identify extremal tra-

jectories that satisfy specific physical constraints. Such analyses have applications across

disciplines, including physics, where they model the dynamics of systems, and mathematics,

where they enrich the theory of differential geometry and the calculus of variations (see,

[1, 4, 5, 6, 9, 10, 11, 12, 15, 17], etc.).

Building on these foundations, variational problems emerge as a central framework for an-

alyzing particle motion and other systems. Deeply rooted in the calculus of variations, they

hold an essential role in mathematical analysis and find extensive applications across disci-

plines such as physics and engineering. These problems aim to identify extrema (minimum

or maximum values) of functionals, which are mappings from a space of functions to real
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numbers. The objective of a typical variational problem is to find a function that optimizes

a specific quantity, often expressed as an integral. For instance, the Hamiltonian of a space

curve, defined as H =
∫
f(κ, τ, κ′, τ ′, ...)ds, where f is a real arbitrary function, depends

on the curvature (κ) and torsion (τ) of the curve. A simplified form of this Hamiltonian,

expressed as
∫
f(κ)ds, depends solely on curvature, offering a more tractable framework for

analyzing specific classes of variational problems. This reduction highlights the significance

of curvature in determining the geometry and behavior of particle trajectories, particularly

in cases where torsion does not contribute to the dynamics. Such models are widely used

in applications ranging from the study of elastic rods and thin filaments to the analysis of

geodesics and other naturally occurring curves. By focusing exclusively on curvature, these

simplified Hamiltonians allow for deeper insights into the fundamental principles governing

the shape and stability of particle paths. Extending this concept, a more general form of

the Hamiltonian,
∫
f(κ, τ)ds, incorporates both curvature and torsion as central variables.

This generalization captures a broader range of geometric and physical phenomena, enabling

the study of more complex particle trajectories. The inclusion of torsion reflects the three-

dimensional twisting of the trajectory, adding a critical layer of complexity that is essential

for understanding systems where both bending and twisting motions play a role. This formu-

lation is particularly useful in problems involving helical structures, dynamical systems, and

energy-minimizing configurations in elastic and physical systems. By considering both curva-

ture and torsion,
∫
f(κ, τ)ds provides a comprehensive framework for exploring the interplay

between these geometric properties in shaping particle motion. Capovilla et al. [4] examined

the equilibrium conditions of space curves under local energy penalties associated with their

curvature and torsion. They derived the Euler–Lagrange equations using the Frenet–Serret

frame and exploited Noether’s theorem to identify conservation laws tied to Euclidean in-

variance. The study highlighted specific integrable cases of the Hamiltonian H =
∫
f(κ, τ)ds

connecting the results to physical applications like polymer stiffness and elastic properties

of DNA. Following this, Ferrández et al. [9] explored the motion of relativistic particles in

3D pseudo-Riemannian spaces, governed by a Lagrangian as a general function of curva-

ture and torsion. They derived Euler-Lagrange equations, identified dynamical invariants

using Killing vector fields, and provided moduli spaces of solutions through integrable crit-

ical curves, extending the study of geometrically constrained motions. On the other hand,

Tükel [19] contributed to this field by adopting a variational approach to determine critical

points of the total squared torsion functional for curves in Euclidean and Minkowski 3-space,

further enriching the understanding of these intricate geometric structures.

Shifting focus to Galilean geometry, we enter a framework where space is treated as a

rigid, three-dimensional entity and time flows uniformly for all observers, independent of

motion. Unlike the relativistic interplay of space and time, the Galilean model offers a sim-

pler, classical foundation for understanding motion and forces, making it a natural setting to

explore the mechanics of particles influenced by curvature and torsion. Bilir et al. [7] study

investigates the classical variational problem of elastic curves in the Galilean plane, deriv-

ing Euler-Lagrange equations, determining the curvature of arc-length parameterized curves,

and providing explicit examples. Tükel and Turhan [20] examined elastic curves in Galilean

3−space G3, deriving the Euler-Lagrange equations for the bending energy functional under
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boundary conditions. They solved the resulting differential equations and provided explicit

examples to characterize elastic curves within this geometric framework. They examined nat-

ural Hamiltonians derived from the derivatives of the principal normal and binormal vectors

of Frenet curves in Galilean and pseudo Galilean 3-space, solving the variational problem for

the total squared torsion functional and identifying critical points characterized by constant

torsion or curvature [16, 21]. Turhan, in his latest work [18], investigated hyperelastic curves

in G3, focusing on their characterization as extremals of a curvature energy functional, which

is also a specific case of a natural Hamiltonian functional. By deriving Euler-Lagrange equa-

tions, he provided insights into the geometric behavior of these curves under the Galilean

metric structure and illustrated their applications through detailed examples.

This paper focuses on the variational problem defined by the functional
∫
f(κ, τ)ds repre-

senting the curvature and torsion of curves in G3. By employing the principles of the calculus

of variations, we derive the associated Euler-Lagrange equations to characterize critical points

of this functional under specific boundary conditions. We provide examples to highlight their

key properties and potential applications. We center our analysis on natural Hamiltonian

systems derived from the Frenet frame of curves and extend it to a generalization of these

Hamiltonians.

2. Preliminaries

Let x = (x1, x2, x3) and y = (y1, y2, y3) vectors in G3. So, the Galilean scalar product of

vectors is given as

< x, y >G3=

{
x1y1, if x1 ̸= 0 or y1 ̸= 0,

x2y2 + x3y3, if x1 = 0 and y1 = 0.

The vectors x and y are said to be perpendicular in the Galilean sense if < x, y >= 0. The

vector x = (x1, x2, x3) is known as isotropic (non-isotropic) if x1 = 0 (x1 ̸= 0). Any unit

non-isotropic vector has the form x = (1, x2, x3). For the vector x, the Galilean norm is

written as

∥x∥G3
=

{
|x1| , if x1 ̸= 0,√

x22 + x23, if x1 = 0,

[22].

A curve α : I ⊂ R → G3 is called as admissible if it has no inflection points and no

isotropic tangents (see, [3, 8, 23]). For a unit speed admissible curve α(s) parametrized by

α(s) = (s, α2(s), α3(s)),

where s is the arclength parameter of α, we can give the curvature κ(s) and the torsion τ(s)

as follows

κ(s) =
√
α′′
2(s) + α′′

3(s)

and

τ(s) =
det(α′(s), α′′(s), α′′′(s))

κ2(s)
.
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On the other hand, the Frenet frame of the curve α(s) in G3 is given by

T (s) = α′(s),

N(s) =
1

κ(s)
α′′(s),

B(s) =
1

κ(s)
(0,−α′′

3(s), α
′′
2(s)),

where T , N , and B are respectively known as the tangent vector, principal normal vector

and binormal vectors of α(s). So, the Frenet equations of α(s) are written in matrix form

as  T ′(s)

N ′(s)

B′(s)

 =

 0 κ(s) 0

0 0 τ(s)

0 −τ(s) 0


 T (s)

N(s)

B(s)

 , (2.1)

[8, 20].

3. Particles with Galilean Curvature and Torsion

Let G3 be the Galilean 3-space and γ be an admissible curve with speed ν = ∥γ′(t)∥ ,
curvature κ, torsion τ and Frenet frame {T,N,B}. This section concerns the model, whose

action is given by the functional H(γ) =
∫
γ f(κ, τ)ds in G3. Let Γ = Γ(t, r) be a variation

of γ : [0, ℓ] → G3 with Γ(t, 0) = γ(t). Associated with Γ, we consider the variation vector

field W along γ(t). The vector fields V (t, r), W (t, r) can be defined, where V (0, t) = γ′(t)

and W (t) = W (0, t) is a variational vector field along γ(t) (see, [2, 9, 18]). If s denotes the

arclength parameter, then γ(s, r), κ2(s, r), V (s, r), etc. can be written for the corresponding

reparametrizations, where s ∈ [0, ℓ] and ℓ is arc length of γ.

We arrive at the following Lemma from the Frenet equations in (2.1).

Lemma 3.1 ([21]). Let γ(t, r) be a variation of curve γ ∈ G3. Then the following formulas

are satified:

i) W (ν) =< W ′, T > ν,

ii) W (κ) =< W ′′, N > −2κ < W ′, T >,

iii) W (τ) =
(
1
κ(< W ′′, B >)

)′− < W ′, τT > .

Now we assume that γ is a stationary point of the functional H(γ). Then, we have

∂H(W ) =
∂H(γ + εW )

∂ε

∣∣∣∣
ε=0

= 0.

Thus, we obtain

∂H

∂ε

∣∣∣∣
ε=0

=

ℓ∫
0

(
fκW (κ) + fτW (τ)+ < W ′, T >

)
ds.

Taking into consideration Lemma 3.1, we find

∂H

∂ε

∣∣∣∣
ε=0

=

ℓ∫
0

 < W ′′, fκN > + < W ′,−2κfκT > +fτ < W ′′′,
1

κ
B >

+ < W ′′, fτ (
1

κ
B)′ > + < W ′,−fττT > + < W ′, fT >

 ds.
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Then, by using standard arguments involving the above formulas and integration by parts,

the first variation of H(γ) along γ in the direction of W is given by

∂H

∂ε

∣∣∣∣
ε=0

=

ℓ∫
0

< E,W > ds+ B[W,γ]|ℓ0 ,

where

E =

(
(−f + τfτ + 2κfκ)T + (fκN)′ −

(
f ′
τ

κ
B

)′)′

and

B[W,γ]|ℓ0 = < W ′′,
fτ
κ
B >

∣∣∣∣ℓ
0

+ < W ′, fκN − f ′
τ

κ
B >

∣∣∣∣ℓ
0

+ < W, (f − τfτ − 2κfκ)T − (fκN)′ +

(
f ′
τ

κ
B

)′
>

∣∣∣∣ℓ
0

.

Point out that, we used fκ and fτ to denote the partial derivatives of f with respect to κ and

τ , respectively. Also, we restrict ourselves to variations with fixed endpoints having the same

Frenet frames on them. Then, the boundary term B[W,γ]|l0 = 0, so that the critical curves

are characterized by the vanishing of the Euler–Lagrange operator E′ = 0. If the necessary

calculations are made and the Frenet equations are used, we have

(−f + τfτ + 2κfκ)
′ = 0, (3.2)

−fκ+ τκfτ + 2κ2fκ + f ′′
κ − τ2fκ + (

f ′
τ

κ
)′τ + (

f ′
ττ

κ
)′ = 0 (3.3)

and

f ′
κτ + (fκτ)

′ − (
f ′
τ

κ
)′′ +

f ′
τ

κ
τ2 = 0. (3.4)

From (3.2), we obtain

f = τfτ + 2κfκ +A, (3.5)

where A constant. Substituting (3.5) into (3.3), we obtain

−κA+ f ′′
κ − τ2fκ + (

f ′
τ

κ
)′τ + (

f ′
ττ

κ
)′ = 0. (3.6)

Theorem 3.1. The motion equations of the action, defined by the functional H(γ) =∫
γ f(κ, τ)ds in G3 are characterized by the Euler-Lagrange equations (3.4) and (3.6).

To further illustrate this theory, we now provide examples that demonstrate the application

of the Euler-Lagrange equations and highlight the geometric and physical implications of the

solutions.

In the Galilean 3-space G3, curves can be classified based on their curvature and torsion

values, as outlined in [14]. This classification includes special cases such as straight lines,

plane curves, circular helices, generalized helices, Salkowski curves, and anti-Salkowski curves,

each defined by specific geometric properties. In the following examples, we will refer to this

classification as a basis for analyzing critical curves

Example 3.1. Let γ is an admissible curve in G3. We examine whether γ is critical for

H based on its curvature and torsion values, as outlined in the cases below to illustrate its

geometric properties:
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i) Straight line. A straight line γ in G3 is a critical point of the functional H.

ii) Planar curve. Let γ be a planar curve in G3. If γ is is a critical point of the functional

H, then, γ satisfies the equation −κA+ f ′′
κ = 0.

iii) Circular helices (W-curves). Any circular helix or W−curve in G3 is a solution of the

functional H when the function f(κ, τ) = 0.

iv) Salkowski and anti Salkowski curves. A Salkowski curve in G3 is critical for the func-

tional H if it satisfies the following Euler-Lagrange equation

−κ2A+ f ′′
τ τ + (

f ′′′
τ

τ
)′ = 0.

Moreover, it is evident from the Euler-Lagrange equations (3.4) and (3.6), that there is no

anti-Salkowski curve in G3 that is critical for H.

Example 3.2. Let γ(s) = (s,
(s− sin s cos s)

4
,
(sin s2 − s2)

4
) be a regular curve in G3 with

κ(s) = sin s and τ(s) = 1 [14]. If the values of curvature and torsion are incorporated into the

Euler-Lagrange equations, it can be observed that the curve in question serves as an example

for the derived results for s = π
2 + kπ, k ∈ Z.

We know that a simple model for the Hamiltonian is in the form
∫
f(κ)ds which depends

on the curvature. Especially, a natural Hamiltonian
∫
κ2ds generated by < T ′, T ′ > is

known as a bending energy functional and critical points of this functional under suitable

condition are called as elastic curves [13]. Elastic curves and its generalization under given

first order boundary data have been worked and developed by many authors up to now. In

his study, Turhan characterized hyperelastic curves in G3 by addressing a generalization of

the functional formed by the inner product of first derivative of the tangent vector of the

curve, which is known as a natural Hamiltonian [18]. Upon examining the derived Euler-

Lagrange equation, it is an undeniable fact that the results serve as an example for the

problem addressed in this study. Beyond this, another obvious question arises: how can

the critical points of the natural Hamiltonian functional formed by other frame elements

(produced by < N ′, N ′ > and < B′, B′ >) of the Frenet frame be determined? In another

example, the critical points of the natural Hamiltonian constructed using the binormal vector

field of the curve are examined.

Example 3.3. We consider an admissible curve γ with Galilean Frenet frame {T,N,B} and

curvature κ and torsion τ in G3. A generalization of the natural Hamiltonian is considered

as the functional
∫
< B′, B′ >n/2 ds. This functional is a generalized torsion energy action

given by
∫
τnds. The critical points of this functional are characterized by the following Euler-

Lagrange equations

n(n− 1)τn−1τ ′ = 0, (3.7)

(n− 1)τnκ+

(
n(n− 1)τn−2τ ′

κ

)′
τ +

(
n(n− 1)τn−1τ ′

κ

)′
= 0 (3.8)

and
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n(n− 1)τnτ ′

κ
−
(
n(n− 1)τn−2τ ′

κ

)′′
= 0. (3.9)

From (3.7), we get τ is a constant value. If τ is zero, then Eqs. (3.8) and (3.9) are satisfied

for any value of κ. If τ ̸= 0, then τ is constant and from (3.8), we obtain κ is zero.
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[19] Tükel, G. Ö., (2019). A variational study on a natural Hamiltonian for curves. Turkish Journal of Math-

ematics, 43(6), 2931− 2940. https://doi.org/10.3906/mat-1906-1
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