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ALMOST POTENT MANIFOLDS
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Abstract. In this paper we introduce a new manifold, namely potent manifolds. We give

examples and investigate the integrability conditions. We also check the curvature relations

of Kaehler potent manifolds and show that such manifolds are flat when it has constant

sectional curvature. Then we introduce potent sectional curvature and obtain a spacial form

of the curvature tensor field when its potent sectional curvature is a constant.
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1. Introduction

Manifolds on which extra structures are defined present a geometrically rich structure. In

this sense, the first structures are complex structures [29] and contact structures [2]. In the

process, many new structures have been defined on manifolds and have received new names

accordingly. These manifolds can be listed as product manifolds [29], quaternion manifolds

[13], biproduct complex manifolds [6], para-contact manifolds [25], para-quaternionic mani-

folds [9], [11], [26], hyper Kaehler manifolds [3], metric mixed 3-structures [14], [27], almost

tangent manifolds, [20], [28] and the like. Recently, with the definition of Golden manifolds

[5] in the literature, new manifold classes such as metallic manifolds [10], poly-Norden man-

ifolds [23], meta-Golden manifolds [21], meta-Metallic manifolds [7], bi-tangent quaternion

manifolds [16], [18] have been introduced and their geometric properties have been examined.

In this paper, inspired by the concept of idempotent transformation, we introduce almost

potent manifolds and investigate the geometric properties of such manifolds. We also intro-

duce Hermitian potent manifolds, Kaehler potent manifolds and potent space forms.

The paper is organized as follows. First, the definition of an almost potent manifold

is presented and examples are given. In addition, the Nijenhuis tensor field of an almost

potent manifold is calculated and the integrability condition is given accordingly. In this
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case, the concept of a Kaehler potent manifold is given. In the third section, the constant

sectional curvature of a Kaehler potent manifold is considered and it is shown that it is flat

if it has constant sectional curvature. For this reason, holomorphic-like sectional curvature

and holomorphic bisectional-like curvatures are investigated, but it turns out that these are

also zero. Therefore, the notion of potent sectional curvature of a Kaehler potent manifold,

is given. In the case that the potent sectional curvature is constant, a special case of the

curvature tensor field of a Kaehler potent manifold is obtained.

2. Almost Potent Manifolds

In this section we introduce almost potent manifolds and almost Hermitian potent man-

ifolds. We then investigate the integrability of almost potent manifolds and define Kaehler

potent manifolds.

Definition 2.1. Let M be a differentiable manifold and F an endomorphism on M . If F is

idempotent, i.e.

F 2X = FX (2.1)

for all X ∈ χ(M), then F is called an almost potent structure on M . In this case (M,F ) is

called an almost potent manifold.

Example 2.1. Consider R2 with the map A(x, y) = (12(x + y), 12(x + y)). Then (R2, A) is

an almost potent manifold.

Example 2.2. Consider the right circular cylinder M given by

X(u, v) = (cosu, sinu, v).

Then the matrix of the shape operator of M is

S =

[
1 0

0 0

]
. (2.2)

Then it is easy to see that S2 = S. Thus (M,S) is an almost potent manifold.

Example 2.3. Consider the Clifford algebra Cl(2, 0) with the basis e1, e2 such that e21 = e22 =

1. Cl(2, 0) can be represented by the algebra M(2,R) of all real matrices by taking

I =

(
1 0

0 1

)
, e2 =

(
0 1

1 0

)
, e3 =

(
0 −1

1 0

)
.

Now consider an idempotent matrix B and define F as

F = Bei

Then F is also an idempotent matrix and Cl(2, 0), F ) is an almost potent manifold.

Example 2.4. Let M be a Riemannian manifold and {e1, e2, e3} an orthonormal frame of

M . Assume that there is an endomorphism F on M such that Fe1 = e1, Fe2 = e2 and

Fe3 = 0. Then (M,F ) is an almost potent manifold.

We now define Hermitian potent manifold.
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Definition 2.2. Let (M,F ) be an almost potent manifold. If there is a Riemannian metric

g on M such that

g(FX, Y ) = g(X,FY ) (2.3)

for X,Y ∈ χ(M), then (M,F, g) is called almost Hermitian potent manifold. In this case we

have

g(FX,FY ) = g(FX, Y ) = g(X,FY ). (2.4)

Example 2.5. Right circular cylinder given in Example 2.2 with the shape operator is an

example of an almost Hermitian potent manifold.

We now investigate the integrability of almost potent structure F . We first note that the

Nijenhuis tensor field of an endomorphism or (1, 1) tensor field is given by

NF (X,Y ) = [FX,FY ] + F 2[X,Y ]− F [FX, Y ]− F [X,FY ] (2.5)

for X,Y ∈ χ(M). Using (2.1) and (2.5) we obtain the following

NF (X,Y ) = [FX,FY ] + F [X,Y ]− F [FX, Y ]− F [X,FY ]. (2.6)

From (2.6), by direct computation, we have the following lemma.

Lemma 2.1. Let (M,F, g) be almost Hermitian potent manifold. Then we have

NF (X,Y ) = (∇FXF )Y − F (∇XF )Y − (∇FY F )X + F (∇Y F )X (2.7)

for X,Y ∈ χ(M).

Thus from (2.7), we have the following result.

Proposition 2.1. Let (M,F, g) be almost Hermitian potent manifold. Then an almost potent

structure is integrable if it is parallel.

Thus we give the following definition.

Definition 2.3. Let (M,F, g) be almost Hermitian potent manifold. If F is parallel, i.e.

(∇XF )Y = 0 (2.8)

for X,Y ∈ χ(M), then (M,F, g) is called Kaehler potent manifold.

Example 2.6. Right circular cylinder given in Example 2.2 with the shape operator S is an

example of a Kaehler potent manifold.

We note the following properties from linear algebra [19] of inner product spaces with an

idempotent map. For any idempotent operator F , its only possible eigenvalues are 0 and

1. An idempotent operator on almost Hermitian potent manifold is typically a projection

operator. It projects vector fields onto a subspace of the space. If F is an idempotent

operator, then the image Im(F ) is a subspace of χ(M). Thus we have

χ(M) = Im(F )⊕Ker(F ) (2.9)

where KerF is the kernel of F . Moreover if F = F ∗ (where F ∗ is the adjoint of F , Im(F )

and Ker(F ) are orthogonal complement to each other. From now on, we will denote the

vector fields belonging to the image space of the endomorphism F on almost Hermitian

potent manifold M by χ(ImF (M)).
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3. Curvature relations of a Kaehler potent manifold

In this section, we are going to investigate the curvature tensor fields of a Kaehler potent

manifold and show that it is a flat when it is a real space form. We also check holomorphic-like

and holomorphic bi-sectional like curvature. We first give the following algebraic properties

of curvature tensor fields.

Lemma 3.1. Let (M,F, g) a Kaehler potent manifold and R the curvature tensor field of

M . Then we have

R(X,Y )FZ = FR(X,Y )Z (3.10)

g(R(X,Y )FZ,FW ) = g(R(X,Y )Z,FW ) (3.11)

R(FX,FY ) = R(X,FY ) = R(FX, Y ) (3.12)

for X,Y, Z,W ∈ χ(ImF (M)).

Proof. (3.10) is clear from (2.8). For (3.11), using (3.10) we have

g(R(X,Y )FZ,FW ) = g(FR(X,Y )Z,FW ).

Then from (2.4) we get (3.11).For (3.12) we first have

g(R(FX,FY )Z,W ) = g(R(Z,W )FX,FY ).

Using (3.11) we obtain

g(R(FX,FY )Z,W ) = g(R(Z,W )X,FY ) = g(R(X,FY )Z,W )

which gives the first part of (3.11). Second part follows from (2.4). □

If the Kaehler potent manifold has constant sectional curvature, the following situation

occurs.

Proposition 3.1. Let M be an n− dimensional Kaehler potent manifold. If M has constant

sectional curvature c at every point p ∈ M , then M is flat provided n ≥ 2.

Proof. Since M has constant sectional curvature c, the curvature tensor field of the manifold

is

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y }

for X,Y, Z ∈ χ(M). Using (3.10) we get

c{g(Y, FZ)X − g(X,FZ)Y } = c{g(Y,Z)FX − g(X,Z)FY }

for X,Y, Z ∈ χ(ImF (M)). Taking Y = FX and using (2.3) we arrive at

c{g(FX,Z)X − g(X,FZ)FX} = c{g(FX,Z)FX − g(X,Z)FX}.

Using (2.1) we have

c{g(FX,Z)FX − g(X,FZ)FX} = c{g(FX,Z)FX − g(X,Z)FX}.

Hence using (2.3) we derive

0 = c{g(FX,Z)FX − g(X,Z)FX}.
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Thus taking Z ⊥ X such that FX and Z are not ortgonal to each other, we get

0 = cg(FX,Z)FX.

This implies that c = 0. □

Remark 3.1. The choice of vector fields used in the proof is very crucial. It is easy to see

that this is valid in (E2 = (R2, <,>). For example, if X = (1, 1), Z = (−1, 1) are chosen

and the idempotent matrix is chosen as F =

(
1 0

0 0

)
, it is seen that this situation is valid.

As in complex geometry, for a Kaehler potent manifold, the holomorphic-like sectional

curvature and the holomorphic-like bi-sectional curvature can be defined as

H(X) = g(R(X,FX)FX,X)

and

H(X,Y ) = g(R(X,FX)FY, Y )

for X,Y ∈ χ(ImF (M)). However, the following propositions will show us that these notions

do not work for Kaehler potent manifolds.

Proposition 3.2. Every Kaehler potent manifold has zero holomorphic-like sectional curva-

ture.

Proof. From (3.10) we have

g(R(X,FX)FX,X) = g(FR(X,FX)X,X).

Then (2.3) gives

g(R(X,FX)FX,X) = g(R(X,FX)X,FX).

Hence g(R(X,FX)FX,X) = −g(R(X,FX)FX,X) which completes proof. □

Proposition 3.3. Every Kaehler potent manifold has zero holomorphic-like bi-sectional cur-

vature.

Proof. From (3.10) and (2.3) we have

H(X,Y ) = g(R(X,FX)FY, Y )

= g(F (R(X,FX)Y, Y )

= g(R(X,FX)Y, FY )

for X,Y ∈ χ(ImF (M)). Hence we derive

H(X,Y ) = g(R(X,FX)FY, Y )

= −g(R(X,FX)FY, Y ).

Thus H(X,Y ) = 0. □

4. Potent sectional curvature and potent space forms

From the previous section, it was seen that the Kaehler potent manifold with constant

sectional curvature is flat and the concepts of holomorphic-like sectional curvature and holo-

morphic bi-sectional curvature do not work. Therefore, in this section, the notion of potent
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sectional curvature is introduced, an example is given, and a special expression is given for

the curvature tensor field of Kaehler potent manifolds with constant potent section curvature.

We present the following definition.

Definition 4.1. Let (M,F, g) be a Kaehler potent manifold. For X,Y ∈ χ(ImF (M)) the

potent sectional curvature is defined by

K(X ∧ FY ) =
g(R(X,FY )FY,X)

g(X,X)g(FY, FY )− g(X,FY )2
. (4.13)

If the potent sectional curvature is constant for arbitrary vector fields X and Y and arbitrary

point p ∈ M , then the Kaehler potent manifold is said to have constant sectional curvature,

or simply a potent space form.

Example 4.1. Consider half space H = {(x1, x2, x3) ∈ R3 | x1 > 0} endowed with the

Riemannian metric

g =
1

K
(
dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3

(x1)2
) (4.14)

for K ∈ R. We define an idempotent map by Fe1 = e1, Fe2 = e2 and Fe3 = 0 where

ei =
∂
∂xi

, i = 1, 2, 3. Since [ei, ej ] = 0 we have

∇e1e1 = − 1

x1
e1, ∇e2e2 =

1

x1
e1,∇e1e2 = − 1

x1
e2,∇e2e1 = − 1

x1
e2.

Thus we get

g(R(e1, P e2)Pe2, e1) = − 1

K

1

(x1)4
, g(R(e2, P e1)Pe1, e2) = − 1

K

1

(x1)4
.

Hence we obtain

K(e1 ∧ Pe2) = K(e2 ∧ Pe1) = −K.

Thus (H, g, F ) is a potent space form.

We now obtain a special expression of the curvature tensor field of a potent space form.

Theorem 4.1. Let (M(c), g, F ) be a potent space form. Then we have

R(X,FY )FZ = c{g(Y, FZ)FX − g(FX,Z)FY } (4.15)

X,Y, Z ∈ χ(ImF (M)).

Proof. Since M is a potent space form, we have

g(R(X,FY )FY,X) = c{g(X,X)g(Y, FY )− g(X,FY )2}. (4.16)

Replacing Y by Y + Z in (4.16), we get

g(R(X,FY )X,FZ) = c{−g(X,X)g(Y, FZ) + g(X,FY )g(X,FZ)} (4.17)

Using (2.3) and (3.11) we derive

R(X,FY )FX = c{−g(X,X)FY + g(X,FY )FX}. (4.18)
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Substituting X by X + Z in (4.18) we obtain

R(X,FY )FZ +R(Z,FY )FX = c{−2g(X,Z)FY + g(X,FY )FZ

+g(Z,FY )FX}. (4.19)

Replacing X by X + Z in (4.16) we get

g(R(X,FY )FY,Z) = c{g(X,Z)g(Y, FY )− g(X,FY )g(Z,FY )}. (4.20)

Hence we have

R(X,FY )FY = c{g(Y, FY )X − g(X,FY )FY }. (4.21)

If Y + Z is written instead of Y in (4.21) we arrive at

2R(X,FY )FZ −R(Z,FY )X = c{2g(Y, FZ)X − g(X,FY )FZ

−g(X,FZ)FY }. (4.22)

Substituting FX instead of X in (4.22) and using (2.1), (2.3) and (3.12) we get

2R(X,FY )FZ −R(Z,FY )FX = c{2g(Y, FZ)FX − g(X,FY )FZ

−g(X,FZ)FY }. (4.23)

Thus from (4.21) and (4.23) we conclude that

3R(X,FY )FZ = c{3g(Y, FZ)FX − g(X,FZ)FY − 2g(X,Z)FY }. (4.24)

Finally substituting FX instead of X in (4.24), and using (3.12) and (2.4) we obtain

R(X,FY )FZ = c{g(Y, FZ)FX − g(FX,Z)FY }

which is (4.16). □

5. Concluding Remarks

This paper presents a new class of manifolds. This manifold class is quite different from the

manifold classes in the literature. In the paper, examples of the existence of such manifolds

are presented, their properties are examined and their sectional curvatures are investigated.

When it is seen that the classical sectional curvatures do not work, a new sectional curvature

notion is introduced, an example is given and accordingly the curvature tensor field of the

manifold is specifically expressed. As can be seen, this presented manifold class shows that

it will have a rich geometry. Therefore, we invite researchers to explore this manifold class.

In the first stage, we especially propose the following research problems.

Open Problem 1. As it is well known, submanifolds of manifolds endowed with extra

structures on them offer a very rich research [4]. Therefore, the investigation of submanifolds

(such as invariant, anti-invariant, semi-invariant, slant) that will be defined depending on

the potent structure of an almost potent manifold may produce interesting results.

Open Problem 2. Harmonic maps between manifolds are one of the most important re-

search topics in differential geometry. For example, it is well known that holomorphic maps

between two Kaehler manifolds are harmonic [1]. It would be an interesting research problem
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to investigate the harmonicity of the map defined between a Kaehler potent manifold (potent

maps may be defined similarly to holomorphic maps).

Open Problem 3. Riemannian submersions defined on manifolds with a special structure

have interesting geometric properties [8], [24]. Therefore, studying the geometric properties

of a Riemannian submersion defined on a Kaehler potent manifold will produce rich research

results.

Open Problem 4. Special curves on a manifold begin with Nomizu and Yano’s definition

of the notion of a circle on a manifold [17]. After this concept, helices and similar concepts

were also defined [12],[15], [22]. The geometry of special curves on a Kaehler potent manifold

will produce interesting geometric results.
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[9] Garćıa-Ŕıo, E., Matsushita, Y., & Vázquez-Lorenzo, R. (2001). Paraquaternionic Kähler manifolds. The

Rocky Mountain Journal of Mathematics, 237–260.

[10] Hretcanu, C. E., & Crasmareanu, M. (2013). Metallic structures on Riemannian manifolds. Revista de la
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