
CALCULATION

Volume 1, Issue 1, 2025, Pages:19-34

E-ISSN: 3062-2107

www.simadp.com/calculation

TRIANGULAR NUMBERS AND CENTERED SQUARE NUMBERS
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Abstract.

The Pythagorean theorem, which asserts that in a right triangle, the sum of the squares

of the legs is equal to the square of the hypotenuse and is mathematically expressed as

a2 + b2 + c2 can be generalized to equations with 5, 7, or more variables. If we seek to

find t consecutive numbers that satisfy such equations, which can be extended infinitely by

increasing the number of variables, and observe the equality of sums of squares for each

case, we encounter what are known as Pythagorean runs. In this study, it was observed

that within Pythagorean runs, which can become increasingly complex as we increase the

number of variables, there exists a strikingly unique solution set when we restrict ourselves

to finding consecutive integers.

By examining the consecutive integers that form these Pythagorean runs, new findings

have emerged. Specifically, Pythagorean runs were analyzed using triangular numbers and

centered square numbers. A hypothesis was formulated, positing that there is a unique

solution involving consecutive integers for Pythagorean runs with figurate numbers. This

hypothesis has been proven using both inductive and geometric proof methods.

Keywords: Consecutive Numbers, Pythagorean Runs, Triangular Numbers, Centered

Square Numbers.
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1. Introduction

In a right triangle, the Pythagorean theorem states that the square of the hypotenuse

(the longest side) is always equal to the sum of the squares of the other two sides. This

fundamental principle can be algebraically expressed as a2 + b2 = c2. By extending this

principle with more variables, we can formulate new equations involving sums of squares

with a structure similar to the Pythagorean Theorem:

a2 + b2 = c2, involving 3 variables.

a2 + b2 + c2 = d2 + e2, involving 5 variables.

a2 + b2 + c2 + d2 = e2 + f2 + g2, involving 7 variables.

a2 + b2 + c2 + d2 + e2 = f2 + g2 + h2 + j2, involving 9 variables, and so forth.
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An infinite number of integers satisfy these equations, which initially appear as sums of

squares. But what if we restrict these integers to be consecutive?

For the Pythagorean Theorem, which is the first of these equations, many different integer

combinations like (7, 24, 25), (8, 15, 17), and (9, 40, 41) come to mind. However, when seeking

consecutive integers that satisfy the Pythagorean Theorem, there is only one solution: (3, 4,

5). This can be observed as follows: 32 + 42 = 52 .

In such equations, regardless of the number of variables added, only one set of consecutive

integers forms a solution, just as with the Pythagorean Theorem. For example:

For the equation a2 + b2 + c2 = d2 + e2, the consecutive numbers are: 102 + 112 + 122 =

132 + 142.

For the equation a2+ b2+ c2+d2 = e2+f2+g2, the consecutive numbers are: 212+222+

232 + 242 = 252 + 262 + 272.

The sequences of consecutive integers that satisfy such equations extend as follows:

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442

552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652

782 + 792 + 802 + 812 + 822 + 832 + 842 = 852 + 862 + 872 + 882 + 892 + 902

According to the literature, these perfect sequences can continue indefinitely, and for any

equation with one term, a unique solution of consecutive integers exists. These sequences,

which appear as sums of squares of consecutive integers, are known in the literature as

”Pythagorean runs”, and various intriguing studies have explored their properties.

This study began by gathering the proofs for special cases of equations with three, five

and seven variables, with the aim of discovering new insights into consecutive integers that

satisfy equations with more variables, and to compare these findings with existing literature.

The discovery of the relationship between triangular numbers and centered square num-

bers, which are well-known for their fascinating properties in number theory, and their con-

nection to consecutive integers forming solutions to the studied equations, constitutes the

original aspect of this research.

At the conclusion of the study, an original algorithm was developed to extend these perfect

sequences indefinitely using figurate numbers.

2. Material and Method

2.1. The Pythagorean Theorem. The Pythagorean Theorem, which has been proven

and widely known for centuries, from ancient Egypt to the present day, has captivated

the attention of many, including renowned mathematicians such as Euclid, Archimedes and

Sabit bin Qurra, as well as the 20th president of the United States, James A. Garfield,

who famously provided a simple proof using a trapezoid. The Pythagorean Theorem, which

describes the geometric relationship in right triangles, states that in a right triangle, the

square of the hypotenuse (the side opposite to the right angle) is equal to the sum of the

squares of the other two legs (the sides adjacent to the right angle). This relationship,

expressed algebraically as a2 + b2 = c2, where a and b are the legs of the right triangle, is

often treated as a fundamental mathematical exercise [1]. Kindly refer to Figure 1 for further

reference.
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Figure 1. Pythagorean Theorem

Definition 2.1.1: A triple (a, b, c) is called a Pythagorean triple if it satisfies the equation

a2 + b2 = c2, ,where a, b and c positive integers [2, p. 4].

The right triangle with side lengths 3, 4, and 5 provides the first integer solution to the

Pythagorean Theorem, forming what is known as the Pythagorean triple (3, 4, 5), as it

satisfies the equation 32 + 42 = 52 . Pythagorean triples can be extended to other integer

combinations, such as (5, 12, 13), where 52 + 122 = 132. These examples demonstrate

the recurring relationship between integer side lengths in right triangles governed by the

Pythagorean theorem.

Definition 2.1.2: A Pythagorean triple (a, b, c) is called a primitive Pythagorean triple if

it satisfies the equation gcd(a, b, c) = 1 [2, p. 4].

Many primitive Pythagorean triples can be derived, such as (3, 4, 5), (16, 63 ve 65), (21,

20 ve 29), (55, 48 ve 73), (65, 72 ve 97),(1155, 1292 ve 1733), (20737, 23184 ve 31105) [2].

These triples consist of positive integers that satisfy the equation a2+ b2 = c2 and have no

common divisor greater than 1, thereby representing primitive solutions to the Pythagorean

theorem.

Proposition 2.1.1: Given that a, b and c ∈ Z+, the only primitive Pythagorean triple

consisting of consecutive integers that satisfy the equation a2 + b2 = c2 is (3, 4, 5).

Proof 2.1.1: Let us express a and c in the form of b such that they are consecutive integers.

Thus, we have c = b + 1 and a = b − 1 . Now let us substitute these into the equation and

solve for equality:

a2 + b2 = c2 (1)

(b− 1)2 + b2 = (b+ 1)2

(b− 1)2 + b2 − (b+ 1)2 = 0

(b− 1 + b+ 1).(b− 1− b− 1) + b2 = 0

2b.(−2) + b2 = 0

b2 − 4b = 0

b.(b− 4) = 0

From here, we find b = 0 or b = 4. However, since b ∈ Z+, b cannot be 0. Therefore b must

be 4. In this case, a = 3, c = 5 . Substituting these results into the equation a2+ b2 = c2, we

obtain the equality 32 + 42 = 52. As can be understood from this direct proof, the numbers

3, 4 and 5 have a distinct significance as the only consecutive integers that solve the equation

a2 + b2 = c2.
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Let us examine Figure 2 for the visual geometric proof found in literature. The proof by

Michael Boardman, which resperents 32 + 42 = 52 by diving it into squares, is illustrated in

Figure 2:

Figure 2. Boardman’s dissection of squares for 32 + 42 = 52 [3]

Boardman sliced the 4-square into four congruent rectangles that fit against the four sides

of the 3-square to produce the 5-square [3, p.323]. As illustrated in Figure 2, this trans-

formation demonstrates how a square can be restructured into a larger square by breaking

it down and incorporating it with smaller square. By dividing the 4-square into four equal

parts and placing them around the sides of 3-square, as shown in the figure, we produce a

5-square. This geometric process leads to the vertification of the equation 32 + 42 = 52.

2.2. Extending the Pythagorean Equation With Additional Variables While Pre-

serving Its Fundamental Principle.

The problem is to determine, if possible, two consecutive integers the sum of whose squares

equals the sum of the squares of three conse- cutive integers; three consecutive integers, the

sum of whose squares equals the sum of the squares of four consecutive integers; and so on

[4, p.155].

The problem Alfred mentioned is to expand the equation a2 + b2 = c2 by adding more

variables while preserving its fundamental principle, thereby creating new equations that

maintain a structure similar to the Pythagorean Theorem:

a2 + b2 = c2, with 3 variables,

a2 + b2 + c2 = d2 + e2, with 5 variables,

a2 + b2 + c2 + d2 = e2 + f2 + g2, with 7 variables,

a2 + b2 + c2 + d2 + e2 = f2 + g2 + h2 + j2, with 9 variables,

a2 + b2 + c2 + d2 + e2 + f2+ = g2 + h2 + j2 + k2 +m2, with 11 variables, and so on.

Let us proceed by analyzing the equation with five variables and attempt to find consec-

utive numbers that satisfy the equation a2 + b2 + c2 = d2 + e2.

For example; 132 + 142 = 102 + 112 + 122

1332 + 1342 = 1082 + 1092 + 1102

13212 + 13222 = 10782 + 10792 + 10802 ” [4, p.155].

When we examine the individual examples in this study, we observe that only the first

example consists entirely of consecutive numbers. This observation supports the second

proposition that we aim to prove in our research.
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Proposition 2.2.1: The only solution set composed of consecutive integers for the five-

variable equation a2 + b2 + c2 = d2 + e2 , where a, b, c, d, e ∈ Z+, is(10, 11, 12, 13, 14).

Proof 2.2.1: The fact that the numbers a, b, c, d and e in the equation a2+b2+c2 = d2+e2

are consecutive allows us to express these numbers in terms of a single variable. Let the

middle number be c = x. In this case a = x − 2, b = x − 1, d = x + 1 and e = x + 2. Now,

substituting these expressions into the equation, we can proceed to solve for equality.

(x− 2)2 + (x− 1)2 + x2 = (x+ 1)2 + (x+ 2)2

x2 − 4x+ 4 + x2 − 2x+ 1 + x2 = x2 + 2x+ 1 + x2 + 4x+ 4

3x2 − 6x+ 5 = 2x2 + 6x+ 5

x2 − 12x = 0

x.(x− 12) = 0

Thus, x = 0 or x = 12 are the solutions.

Since c ∈ Z+ , c cannot be 0 (c ̸= 0) , so we conclude that c = 12. Therefore a = 10, b =

11, d = 12, e = 13. Substituting these values into the equation a2 + b2 + c2 = d2 + e2 we

obtain: 102 + 112 + 122 = 132 + 142.

Let us examine Figure 3 for the visual geometric proof referenced in the literature. The

proof by Michael Boardman, which decomposes 102 + 112 + 122 = 132 + 142 into squares, is

illustrated in Figure 3:

Figure 3. Boardman’s dissection of squares for 102 + 112 + 122 = 132 + 142 [5]

The geometric proof in Figure 3 demonstrates that if we divide a square with side length 12

into 12 parts and distribute them evenly along the edges of the 11-unit and 10-unit squares,

we can transform these squares into 13-unit and 14-unit squares. This confirms the equation

102 + 112 + 122 = 132 + 142 [5]. From this, it can be inferred that the middle number, 12,

plays a crucial role in the geometric proof of the equation.

Let us now find the consecutive numbers that satisfy the seven-variable equation a2+ b2+

c2+ d2 = e2+ f2+ g2. Refer to Figure 4 for the geometric proof found in the literature. The

proof by Michael Boardman, which divides the equation 212+222+232+242 = 252+262+272

into squares, is illustrated in Figure 4:
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Figure 4. Boardman’s dissection of squares for 212 + 222 + 232 + 242 =
252 + 262 + 272 [6]

In Figure 4, a 24-unit square is divided into 24 equal parts, which are subsequently grouped

as 24 = 4 + 8 + 12. By arranging these groups neatly along the edges of the squares with

side lengths of 23,22 and 21 units, respectively, we can transform them into squares with

side lengths of 25, 26 and 27 units [6]. The geometric proof presented in Figure 4 illustrates

that the middle number,24, is essential in establishing the equation 212 + 222 + 232 + 242 =

252 + 262 + 272.

At this juncture, let us enumerate the equations for the sum of consecutive squares that

we have examined in detail, involving three, five, and seven variable:

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272

Boardman termed these identities Pythagorean runs, because they involve consecutive

positive integers, just like 32 + 42 = 52, the simplest of the Pythagorean triples [5, p.21] .

If Tn = 1 + 2 + ...+ n, (4Tn − n)2 + ...+ (4Tn)
2 = (4Tn + 1)2 + ...+ (4Tn + n)2 [6].

Thanks to Boardman, we can now readily construct any equation that satisfies the condi-

tions we are seeking:

For n = 3, with T3 = 6, we have (4.6− 3)2 + ...+ (4.6)2 = (4.6 + 1)2 + ...+ (4.6 + 3)2.
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This results in the equation: 212 + 222 + 232 + 242 = 252 + 262 + 272

For n = 4, with T4 = 10, we have 362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442.

For n = 5, with T5 = 15, we have 552+562+572+582+592+602 = 612+622+632+642+652.

Boardman’s research demostrates that if we establish the appropriate equations for each

n ≥ 1 according to the equality (4Tn − n)2 + ... + (4Tn)
2 = (4Tn + 1)2 + ... + (4Tn + n)2,

where Tn = 1 + 2 + ...+ n, there exists a specific rhythmic arrangement that is evident not

only horizontally but also vertically.

Refer to Figure 5 for the Pythagorean runs composed of consecutive squares:

Figure 5. Pythagorean Runs of Consecutive Numbers

These Pythagorean sequences, with their astonishing and captivating mathematical essence,

represent merely the tip of the iceberg. The technique of determining the identities of such

equations by consecutive sums of squares was first discovered by Georges Dostor. [7, p. 44].

”Are there other relationships hidden within Pythagorean runs waiting to be uncovered?” has

engaged mathematicians for quite some time and continues to be a pertinent question among

them. The findings, proofs, and relationships we have compiled thus far are of considerable

significance to our research, guiding us to explore how these non-coincidental equations can

be solved with greater ease, under what conditions they hold validity, and concentrating

on their mathematical properties to unveil the profound mathematical structure inherent in

these equations.
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2.3. Figured Numbers Hidden in Consecutive Pythagorean Runs.

Upon a meticulous examination of the equations presented in Figure 5, it becomes evident

that there exist certain critical prerequisites within the unique solutions that facilitate the

indefinite continuation of the equations found in the Pythagorean runs of consecutive squares.

Condition 2.3.1: The initial terms in all Pythagorean runs are triangular numbers.

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442

552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652

782 + 792 + 802 + 812 + 822 + 832 + 842 = 852 + 862 + 872 + 882 + 892 + 902

1052+1062+1072+1082+1092+1102+1112+1122 = 1132+1142+1152+1162+1172+1182+1192

The numbers 3, 10, 21, 36, 55, 78, 105 are known as triangular numbers. Consequently, it

has been found that triangular numbers are embedded within the solution sets of the equa-

tions analyzed in our research.

These numbers are termed triangular numbers because they can be represented by arrang-

ing equal-diameter spheres in the shape of an equilateral triangle. Each triangular number

is generated by adding an additional row to the preceding triangular number, meaning that

successive row contains one more unit than the previous one. Therefore, when a series of

equal-diameter spheres is organized in the configuration of an equilateral triangle, triangular

numbers are produced. [8, p. 9]. To further elucidate triangular numbers, let us consider

Figure 6:

Figure 6. The representation of triangular numbers in an equilateral triangle figure

Starting from a point, add to it two points, so that to obtain an equilateral triangle.

Six-points equilateral triangle can be obtained from three-points triangle by adding to it

three points; adding to it four points gives ten-points triangle, etc. So, by adding to a

point two, three, four etc. points, then organizing the points in the form of an equilateral

triangle and counting the number of points in each such triangle, one can obtain the num-

bers1,3,6,10,15,21,28,36,45,55 which are called triangular number [9, p. 58]. Based on this,

we can extend the sequence of triangular numbers indefinitely as follows: 1, 3, 6, 10, 15, 21,
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28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378,

405, 435, and so on.

If we closely examine the initial terms of the Pythagorean runs, we observe the following

equations:

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442

552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652

782 + 792 + 802 + 812 + 822 + 832 + 842 = 852 + 862 + 872 + 882 + 892 + 902

From the triangular numbers, a discernible pattern emerges, wherein the numbers 1, 3,

6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, and so forth alternate between being present and

absent. Specifically, among the triangular numbers, we find the following sequence: 1 is

absent,3 is present, 6 is absent, 10 is present, 15 is absent, 21 is present, 28 is absent, 36 is

present, 45 is absent, 55 is present, 66 is absent, 78 is present, 91 is absent, and so on. This

conclusion indicates that within the triangular number sequence 1, 3, 6, 10, 15, 21, 28, 36,

45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 405,

435, 465, the numbers highlighted in red are particularly significant. Consequently, these

red triangular numbers also constitute the initial terms of consecutive Pythagorean runs.

The pattern observed with triangular numbers is indeed intriguing and may lead to valuable

mathematical insights.

Condition 2.3.2: In the Pythagorean runs, the initial terms on the right side of the equa-

tions are centered square numbers.

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442

552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652

782 + 792 + 802 + 812 + 822 + 832 + 842 = 852 + 862 + 872 + 882 + 892 + 902

Thus, within the solution sets of the Pythagorean runs we have examined, it has been

revealed that the centered square numbers, which can be arranged into a centered square

configuration, are present.

Centered Square Number is a centered polygonal number consisting of a central dot with

four dots around it, and then additional dots in the gaps between adjacent dots [10]. To

enhance our understanding of centered square numbers, let us consider Figure 7:

If we enumerate the centered square numbers, 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221,

265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925... [11].
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Figure 7. Arranging centered square numbers in a centered square figure

Centered square numbers are the sum of two consecutive square numbers and are congruent

to 1 (mod 4) and the general term is [n2 + (n+ 1)2] [10].

Examples of obtaining some centered square numbers include:

For n = 1, 12 + 22 = 5

For n = 2, 22 + 32 = 13

For n = 3, 32 + 42 = 25

For n = 4, 42 + 52 = 41

For n = 5, 52 + 62 = 61

As can be observed; all centered square numbers, with the exception of 1, constitute the

first terms on the right side of the equations in the Pythagorean runs, respectively. However,

some triangular numbers are included in the Pythagorean runs.

Building upon this, the original Proposition 2.3.1 is developed. Figure 8 was discovered

as the original non-verbal proof to validate this proposition. In Figure 8, the objective is to

derive the triangular numbers relevant to the Pythagorean runs from the figures of centered

square numbers.

Proposition 2.3.1: In the equations of Pythagorean runs, for ∀ n ∈ N+ , the first term on

the right side of the equation is a centered square number, expressible as [n2+(n+1)2]. The

triangular number derived from these square numbers, which can be represented using the

formula [(n+ n+ 1).n], yields the first term on the left side of the equation.

Proof 2.3.1: The innovative approach we seek to explore involves deriving the triangular

configuration illustrated in Figure 6 from the centered square numbers depicted in Figure 7,

utilizing the geometric proof method. To facilitate comprehension, let us examine Figure 8:
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Figure 8. Geometric proof. Derivation of triangular numbers belonging to
Pythagorean runs from centered square numbers

The original geometric proof presented in Figure 8 illustrates that certain triangular

numbers can be derived from all centered square numbers expressible by the general term

[n2 + (n + 1)2] within Pythagorean runs. Furthermore, these triangular numbers can be

represented by the specific term [(n+ n+ 1).n]. Rearranging the equations yields;

For the centered square numbers, n2 + (n+ 1)2 = 2n2 + 2n+ 1,

For the triangular numbers, (n+ n+ 1).n = 2n2 + n.

Condition 2.3.3: In equations associated with Pythagorean runs, for ∀ n ∈ N+ , the first

term on the left side of the equation is a triangular number expressible as (2n2 + n), while

the first term on the right side is a centered square number expressible as (2n2 + 2n+ 1).

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442

552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652

782 + 792 + 802 + 812 + 822 + 832 + 842 = 852 + 862 + 872 + 882 + 892 + 902
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Conditions 2.3.1, 2.3.2, and 2.3.3, along with the original geometric proof presented in

Figure 8, collectively provide highly significant validations for Pythagorean runs that can

be extended indefinitely. No studies have been identified in the literature that establish a

connection between the Pythagorean runs and centered square numbers or triangular num-

bers, highlighting the originality of this research. As a result of the investigation, a novel

model has been developed encompassing all centered square numbers and triangular numbers

hidden within the Pythagorean runs. Proposition 2.3.2, an original proposition pertaining to

Pythagorean runs, was formulated using Figure 8 and Condition 2.3.3, and was subsequently

proven through the method of induction, which is one of the recognized mathematical proof

techniques.

Proposition 2.3.2: The Pythagorean runs, for ∀ n ∈ N+ , are represented by consecutive

terms expressed in the form (2n2 + n)2 + ... = (2n2 + 2n + 1)2 + ..., where (2n2 + 2n + 1)

denotes a centered square number and (2n2 + n) signifies a triangular number. The total

number of consecutive terms in the equation is (2n + 1), with the left side containing one

additional term compared to the right side.

Proof 2.3.2: For n = 1, the first equation S1 is : (2.12+1)2+ ... = (2.12+2.1+1)2+ ... and

the total number of terms is 2.1+1 = 3. Therefore, the three-term equation with consecutive

terms is 32 + 42 = 52.

For n = 2, the second equation S2 is : (2.22 + 2)2 + ... = (2.22 + 2.2 + 1)2 + ... and the

total number of terms is 2.2 + 1 = 5.

102 + ... = 132 + ...

The equation 102 + 112 + 122 = 132 + 142 consists of five consecutive terms.

Let the k-th equation Sk be true for n = k.

Assume Sk has consecutive terms in the form (2k2+k)2+ ... = (2k2+2k+1)2+ ... and let

the total number of consecutive terms in the equation be (2k+1) with the left side containing

one additional term compared to the right side. Thus, we can express Sk as follows:

Sk : (2k2 + k)2 + ... = (2k2 + 2k + 1)2 + ...

To explicitly illustrate the consecutive terms of the proposition Sk , we have:

Sk : (2k2 + k)2 + (2k2 + k + 1)2 + (2k2 + k + 2)2 + ... + (2k2 + 2k)2 = (2k2 + 2k + 1)2 +

(2k2 + 2k + 2)2 + ...+ (2k2 + 3k)2

To express the sum of the consecutive terms on both sides of this equation using the

summation symbol Σ we introduce the variable z:

Thus, Sk can be rewritten as:

Sk : Σk
z=0(2k

2 + k + z)2 = Σk
z=1(2k

2 + 2k + z)2

Sk : Σk
z=0(2k

2 + k + z)2 = Σk
z=1(2k

2 + 2k + z)2

(2k2 + k)2 +Σk
z=1(2k

2 + 2k + z)2 = Σk
z=1(2k

2 + k + z)2

(2k2 + k)2 = Σk
z=1(2k

2 + 2k + z)2 − Σk
z=1(2k

2 + k + z)2

To utilize the difference of squares identity a2− b2 = (a− b).(a+ b) we will arrange similar

terms side by side as follows:
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Utilizing the difference of squares identity a2 − b2 = (a − b).(a + b), we can derive the

following:

The equality k2 + k = Σk
z=12z ...(1) is established. This equality holds true and is a

consequence of the equation accepted as valid for n = k.

Now, we need to verify whether the proposition Sk+1 for n = k+1 is correct. Specifically,

we examine

Sk+1 : Σ
k+1
z=0(2(k+1)2+k+1+z)2 = Σk+1

z=1(2(k+1)2+k+1+z)2 , Is this statement valid?
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[2(k + 1)2 + k + 1]2] = Σk+1
z=1(2(k + 1)2 + 2(k + 1) + z)2 − Σk+1

z=1(2(k + 1)2 + k + 1 + z)2

Utilizing the difference of squares identity a2 − b2 = (a − b).(a + b) , we can derive the

following:

As seen, according to the method of induction, the result (1) obtained from the assumption

Sk, which is accepted to be true for n = k, has been substituted into the equation for

n = k + 1 to prove that the proposition Sk+1 is also valid. In all the equations related to

the Pythagorean runs, for ∀ n ∈ N+, the first term on the left side of the equation is a

triangular number that can be expressed as (2n2 + n), and the first term on the right side

of the equation is a centered square number expressible as (2n2 + 2n+ 1). The relationship

between the centered square numbers and triangular numbers, which are embedded in the
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Pythagorean runs, was first discovered in this study and was formulated in Proposition 2.3.1,

with a visual proof provided in Figure 8. Building on this, Proposition 2.3.2, developed to

further address such equations, was proven using the method of mathematical induction.

Table 2.1 demonstrates the mathematical relationship between the triangular numbers,

which appear as the first terms on the left side of the Pythagorean sequence equations, and

the centered square numbers, which serve as the first terms on the right side, for the first ten

natural numbers

n. Pythagorean runs 2n2 + n, Triangular number 2n2 + 2n+ 1, Centered square number 2n+ 1, Number of consecutive terms Equations related to Pythagorean sequences
1 3 5 3 32 + 42 = 52

2 10 13 5 102 + 112 + 122 = 132 + 142

3 21 25 7 212 + 222 + 232 + 242 = 252 + 262 + 272

4 36 41 9 362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442

5 55 61 11 552 + 562 + · · ·+ 602 = 612 + · · ·+ 652

6 78 85 13 782 + 792 + · · ·+ 842 = 852 + · · ·+ 902

7 105 113 15 1052 + 1062 + · · ·+ 1122 = 1132 + · · ·+ 1192

8 136 145 17 1362 + 1372 + · · ·+ 1442 = 1452 + · · ·+ 1522

9 171 181 19 1712 + 1722 + · · ·+ 1802 = 1812 + · · ·+ 1892

10 210 221 21 2102 + 2112 + · · ·+ 2202 = 2212 + · · ·+ 2302

Table 2.1. Pythagorean runs and related equations.

3. Results and Discussion

As a result of the research, a creative and original Proposition 2.3.1, establishing a sig-

nificant connection between figurate numbers specifically triangular numbers and centered

square numbers and Pythagorean sequences, was developed and proven through the visual

proof in Figure 8. Building upon this original visual proof, Proposition 2.3.2 was formulated

and subsequently proven using the method of mathematical induction.

4. Conclusion and Suggestions

By investigating the applications of Pythagorean sequences in fields such as physics, engi-

neering, computer science, and others, further research could explore the contributions and

practical applications that the developed proposition might offer in areas like wave theory,

optics, sound analysis, or artificial intelligence. In this way, it may become possible to uncover

real-world applications of the Pythagorean Theorem and similar mathematical equalities.
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