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Abstract. In this article, firstly we introduce pointwise slant and pointwise semi-slant

submanifolds in nearly para-Kaehler manifolds. We demonstrate that there exist pointwise

semi-slant non-trivial warped product submanifold MT ×kMθ in nearly para-Kaehler man-

ifolds by giving an example. We get a characterization, give certain theorems depending on

the casual characters and we reach an optimal inequality.
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1. Introduction

Pointwise slant submanifolds were first introduced by F. Etayo in [11] as quasi-slant sub-

manifolds. Such submanifolds have been studied extensively by B.-Y. Chen and O.J. Garay

[10]. Then P.Alegre and A.Carriazo studied slant submanifolds in para-Hermitian manifolds

and detailed definitions of types of submanifolds in semi-Riemannian setting were provided

by them [3, 4].

Warped products emerged in the mathematical and physical subjects before 1969, for

example, semi-reducible space, which is utilized for the warped product by Kruchkovich in

1957 [19]. It has been succesfully used in the general theory of relativity, string theory and

black holes. On the other hand, warped product manifolds was introduced and studied by

R.L. Bishop and B. O’Neill [9]. Later, many authors researched on warped product and

submanifolds [1, 2, 5, 7, 8, 12, 14, 15, 20]

B. Sahin studied warped product pointwise semi-slant submanifolds in Kaehler manifolds

[23]. He researched that there exist of the second form MT ×k Mθ in Kaehler manifold M̄.

Also he found a characterization, theorem, interesting results, inequality and he obtained

examples of such submanifolds. Later, S. Ayaz and Y. Gündüzalp studied warped product

pointwise hemi-slant submanifolds whose ambient spaces are nearly para-Kaehler manifolds

[6].
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Nearly Kaehler manifolds were studied by Tachibana in [25]. For example, S6 (six dimen-

sional sphere) is a example of nearly Kaehler non-Kaehler manifold.

Every nearly para-Kaehler manifold isn’t a para-Kaehler. But Every para-Kaehler mani-

fold is a nearly para-Kaehler [24]. So, we give some examples for both nearly para-Kaehler

and para-Kaehler manifold and we research pointwise semi-slant warped product submani-

folds in nearly para-Kaehler manifolds in this paper.

This article is organized as follows. In section 2, we recall some fundamental notins for the

paper. In section 3, we introduce pointwise semi-slant submanifolds of nearly para-Kaehler

manifold and give some examples. In section 4, we introduce pointwise semi-slant non-trivial

warped product submanifolds in nearly para-Kaehler manifold. We also provide an example.

In section 5, we obtain an inequality in terms of the second fundamental form.

2. Preliminaries

Let (M̄, ğ) be a 2n-dimensional semi-Riemannian manifold. If there is a tensor field P of

type (1, 1) on M̄, such that

ğ(PXa,PYb) = −ğ(Xa,Yb), P2Xa = Xa (2.1)

for any vector fields Xa,Yb on M̄, it is said a para-Hermitian manifold. In addition, it is

called to be para-Kaehler manifold, if it satisfies ∇̄P = 0 identically [17].

Let T M̄ be the tangent bundle of M̄ and ∇̄, the covariant differential operator on M̄
with respect to ğ. If

(∇̄XaP)Xa = 0 (2.2)

for any T M̄, then an almost para Hermitian manifold is called nearly para-Kaehler struc-

ture. Equation (2) is equivalent to

(∇̄XaP)Yb + (∇̄Yb
P)Xa = 0 (2.3)

for any vector fields Xa,Yb on M̄
Let M be a submanifold of (M̄,P, ğ). The Gauss and Weingarten equations are

∇̄XaYb = ∇XaYb + h̆(Xa,Yb), (2.4)

∇̄XaVc = −AVcXa +∇⊥
Xa
Vc, (2.5)

for Xa,Yb ∈ Γ(T M) and Vc ∈ Γ(T M⊥), that h̆ is the second fundamental form of M, AVc

is the Weingarten endomorphism with Vc and ∇⊥ is the normal connection. AVc and h̆ are

related by

ğ(AVcXa,Yb) = ğ(h̆(Xa,Yb),Vc), (2.6)

here ğ states the semi-Riemannian metric on M. For any tangent vector field Xa, we denote

PXa = RXa + SXa, (2.7)

that RXa is the tangential part of PXa and SXa is the normal part.

For any normal vector field Vc,

PVc = rVc + sVc, (2.8)

that rVc and sVc are the tangential and normal vectors of PVc.

Now, denote by GXaYb and UXaYb the tangential and normal parts of (∇̄XaP)Yb, i.e.,
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(∇̄XaP)Yb = GXaYb + UXaYb, (2.9)

for any Xa,Yb ∈ Γ(T Mx). Using of (2.7), (2.8), (2.9) and the Weingarten and Gauss formu-

las, we obtain

GXaYb = (∇̄XaR)Yb −ASYb
Xa − rh̆(Xa,Yb) (2.10)

and

UXaYb = (∇̄XaS)Yb − h̆(Xa,RYb)− sh̆(Xa,Yb). (2.11)

Similarly, for any Vc ∈ T ⊥M , denote the tangential and normal parts of (∇̄XaP)Yb by GVcYb

and UXaYb respectively, we get

GXaVc = (∇̄Xar)Vc +RAVcXa −AsVcXa (2.12)

and

UXaVc = (∇̄Xas)Vc + h̆(rVc,Xa) + SAVcXa (2.13)

where the covariant derivative of R,S, r, s are defined by

(∇̄XaR)Yb = ∇XaRYb −R∇XaYb, (∇̄XaS)Yb = ∇⊥
Xa

SYb − S∇XaYb,

(∇̄Xar)Vc = ∇XarVc − r∇⊥
Xa

Vc, (∇̄Xas)Vc = ∇⊥
Xa
sVc − s∇⊥

Xa
Vc

for any Xa,Yb ∈ T M and Vc ∈ Γ(T M⊥)

For the proporties of G and U we refer [18], which we express here for later use.

(m1) (a) GXa+Yb
Wc = GXaWc + GYb

Wc

(b) UXa+Yb
Wc = UXaWc + UYb

Wc

(m2) (a) GXa(Yb +Wc) = GXaYb + GXaWc

(b) UXa(Yb +Wc) = UXaYb + UXaWc

(m3) (a) ğ(GXaYb,Wc) = −ğ(Yb,AXaWc)

(b) ğ(UXaYb,Vf ) = −ğ(Yb,GXaVf )

(m4) GXaPYb + UXaPYb = −P(GXaYb + UXaYb)

for any Xa,Yb,Wc ∈ Γ(T Mx) and Vf ∈ Γ(T M⊥
b )

On a nearly para-Kaehler manifold M̄x. by equations (2.2) and (2.9), we get

(a)GXaYb + GYb
Xa = 0 (b)UXaYb + UYb

Xa = 0 (2.14)

for any Xa,Yb ∈ Γ(T Mx)

The mean curvature vector field is defined by

H =
1

n
traceh̆. (2.15)
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We now introduce the following notions in a nearly para-Kaehler manifolds.

Definition 2.1. We call that a submanifold M in a nearly para-Kaehler manifold (M̄,P, ğ)
is pointwise slant, if for all timelike or spacelike tangent vector field Xa, the ratio

ğ(RXa, RXa)/ğ(PXa, PXa) is a function. Moreover, a submanifold M of nearly para-Kaehler

manifold M̄ is said pointwise slant [13], if at each point p ∈ M, the Wirtinger angle PX
between θ(X ) and TpM is dependent of the choice of the non-zero X ∈ TpM. In this

instance, the Wirtinger angle causes a real-valued function θ : T M− {0} → R which is said

slant function or the Wirtinger function.

It is easy to see that a pointwise slant submanifold in nearly para-Kaehler manifold is

said slant, if its Wirtinger function α is globally constant. Also we notice that all slant

submanifolds are pointwise slant submanifolds.

If M is a para-complex (para-holomorphic) submanifold, in that case, PXa = RXa and

the above ratio is equal to 1. Moreover if M is totaly real (anti-invariant), then R = 0,

so PXa = SXa and the above ratio equals 0. Hence, both totally real and para-complex

submanifolds are the private situations of pointwise slant submanifolds. Neither totally real

nor para-complex pointwise slant submanifold can be called a proper pointwise slant. These

manifolds are proper manifolds.

Definition 2.2. Let M be a proper pointwise slant submanifold in nearly para-Kaehler man-

ifold (M̄,P, ğ). We call that it is of

type-1 if for any space-like or time-like vector field Xa, RXa is time-like or space-like, and
|RXa|
|PXa| > 1 .

type-2 if for any space-like or time-like vector field Xa, RXa is time-like or space-like, and
|RXa|
|PXa| < 1 .

Similar to the way of P. Alegre and A. Carriazo used [4], the following theorem and results

are obtained.

Theorem 2.1. Let M be a pointwise slant submanifold in nearly para-Kaehler manifold

(M̄,P, ğ). So,

(a) M is pointwise slant submanifold of type-1 if and only if for any spacelike or timelike

vector field Xa, RXa is timelike or spacelike, also arise a function µ ∈ (1,+∞). Therefore,

R2 = µId. (2.16)

If θ indicates the slant function of M, µ = cosh2 θ.

(b) M is pointwise slant submanifold of type-2 if and only if for any spacelike or timelike

vector field Xa, RXa is timelike or spacelike, also arise a function µ ∈ (0, 1). Therefore,

R2 = µId. (2.17)

If θ indicates the slant function of M , µ = cos2 θ.
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Proof. Firstly, if M is the pointwise slant submanifold of type-1 for any spacelike tangent

vector field Xa, RXa is timelike and by the equation of (2.1), PXa is too. Furthermore, they

supply |RXa|/|PXa| > 1 . Therefore, it follows that the slant function θ. Because of,

cosh θ =
|RXa|
|PXa|

=

√
−ğ(RXa, RXa))√
−ğ(PXa,PXa)

. (2.18)

Using (2.1) and (2.18), we have

ğ(R2Xa,Xa) = cosh2 θğ(Xa,Xa).

Thus, we get R2Xa = XaI. So, from (2.18), we get µ = cosh2 θ.

In a similar method for any timelike tangent vector field Z, now, RZ and PZ are spacelike

and therefore, instead of (2.18) we get

cosh θ =
|RZ|
|PZ|

=

√
ğ(RZ, RZ))√
ğ(PZ,PZ)

.

Because of R2Z = µZ, for any spacelike and timelike Z it further provides for lightlike vector

fields and therefore we get R2 = µId. The converse is (a) direct calculation.

Similarly, we have (b).

Finally, for both pointwise slant submanifolds of type-1 and type-2, if Xa is space-like, in

that case, PXa is timelike. Thus, all pointwise slant submanifold of type-1 and type-2 should

be a neutral semi-Riemann manifold.

□

Using (2.1),(2.7) and Theorem 2.1, we obtain the following corollary.

Corollary 2.4. Let M be a pointwise slant submanifold of a nearly para-Kaehler manifold

(M̄,P, ğ) with the slant function θ. For any non-null vector fields Xa,Yb ∈ Γ(T M), we

obtain:

If M is of type-1, then

ğ(RXa, RYb) = − cosh2 θğ(Xa,Yb), ğ(SXa, SYb) = sinh2 θğ(Xa,Yb). (2.19)

If M is of type-2, then

ğ(RXa, RYb) = − cos2 θğ(Xa,Yb), ğ(SXa, SYb) = − sin2 θğ(Xa,Yb). (2.20)

Using (2.1),(2.7),(2.8) and Theorem 2.1, we get the following corollary.

Corollary 2.1. Let M be a pointwise slant submanifold in nearly para-Kaehler manifold

(M̄,P, ğ). M is a pointwise slant submanifold of

*type-1 if and only if rSXa = − sinh2 θXa and SRXa = −sSXa for all timelike (spacelike)

vector field Xa.

*type-2 if and only if rSXa = sin2 θXa and SRXa = −sSXa for all timelike (spacelike) vector

field Xa.
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3. Pointwise Semi-Slant Submanifolds in Nearly Para-Kaehler Manifolds

In this section, we introduce and study pointwise semi-slant submanifolds in nearly para-

Kaehler manifold. Also we give some examples.

Definition 3.1. A semi-Riemannian submanifold M of a nearly para-Kaehler manifold

(M̄,P, ğ) is called pointwise semi-slant submanifold, if there are two orthogonal distribu-

tions DT , Dθ on M at the point q ∈ M such that the following conditions are satisfied.

1) T M = DT ⊕Dθ;

2) DT is an invariant (para-holomorphic) distribution, PDT = DT ;

3) Dθ is a pointwise slant distribution.

Then, we say the θ is the semi-slant function with the pointwise slant distribution Dθ.

The invariant distribution DT of a pointwise semi-slant submanifold is a pointwise slant dis-

tribution with slant function θ = 0.

In the above definition, if we suppose that the dimensions a = dimDT and b = dimDθ, then

we get

*) If a = 0 and θ is globally constant, M is a slant submanifold.

*) If a = 0, M is a pointwise slant submanifold.

*) If b = 0, M is an invariant submanifold.

*) If a = 0 and θ = π
2 , M is an anti-invariant submanifold.

*) If a ̸= 0 and θ is constant on M, M is a semi-slant submanifold.

*) If a ̸= 0, b ̸= 0 and θ = π
2
, M is a semi invariant submanifold.

A pointwise semi-slant submanifold M is called proper if its semi-slant function satisfies

θ ̸= 0, π2 , also θ is nonconstant on M.

Remark 3.1. Pointwise slant submanifold is a generalization of slant submanifold.

Using (1),(5),(6), Theorem 2.1 and Remark 3.1, we have the following result.

Corollary 3.1. Let M be a pointwise semi-slant submanifold in nearly para-Kaehler man-

ifold (M̄,P, ğ) with semi-slant function θ. Then, for any non-null vector fields Xa,Yb ∈
Γ(Dθ), we obtain

If M is of type-1, then

ğ(RXa, RYb) = − cosh2 θğ(Xa,Yb), ğ(SXa, SYb) = sinh2 θğ(Xa,Yb). (3.21)

If M is of type-2, then

ğ(RXa, RYb) = − cos2 θğ(Xa,Yb), ğ(SXa, SYb) = − sin2 θğ(Xa,Yb). (3.22)

Now, we give two lemmas for using next section.

Lemma 3.1. Let M be a proper pointwise semi-slant type-1-2 submanifold whose ambient

spaces are nearly para-Kaehler manifold (M̄,P, ğ). Dθ is slant distribution and (DT) is

holomorphic distribution. Then we get

1) (for type-1)

ğ(∇X aYb,Z) = −csch2θ{ğ(h̆(Xa,PYb), SZ)− ğ(h̆(Xa,Yb), SRZ)− ğ(UXaYb, SZ)} (3.23)
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2) (for type-2)

ğ(∇X aYb,Z) = csc2θ{ğ(h̆(Xa,PYb), SZ)− ğ(h̆(Xa,Yb), SRZ)− ğ(UXaYb, SZ)} (3.24)

for any non-null vector fields Xa,Yb ∈ Γ(DT ), Z ∈ Γ(Dθ).

Proof. 1) (for type-1)

ğ(∇X aYb,Z) = −ğ(P∇̄X aYb,PZ)

= −ğ(∇̄X aPYb,PZ) + ğ((∇̄X aP)Yb,PZ)

By using (7),(8) and (9), we get

ğ(∇X aYb,Z) = ğ(PYb, ∇̄X aPZ) + ğ(GX aYb, RZ) + ğ(UX aYb, SZ)

= ğ(Yb,P∇̄X aRZ) + ğ(PYb, ∇̄X aSZ)− ğ(Yb,GX aRZ)

+ ğ(UX aYb, SZ)

= ğ(Yb, ∇̄X aR
2Z)− ğ(Yb, ∇̄X aSRZ) + ğ(Yb, (∇̄X aP)SZ)

− ğ(PYb, ASZX a)− ğ(Yb,GX aRZ) + ğ(UX aYb, SZ).

By using (9),(4),(5),(6),(16) and (17) we get

ğ(∇X aYb,Z) = −cosh2θğ(Yb, ∇̄X aZ) + ğ(h̆(Xa,Yb), SRZ)

− ğ(h̆(Xa,PYb), SZ) + ğ(UX aYb, SZ)

= cosh2θğ1(∇X aYb,Z) + ğ(h̆(Xa,Yb), SRZ)

− ğ(h̆(Xa,PYb), SZ) + ğ(UX aYb, SZ).

From the above relation, we get (1) and using similar method, we obtain (2). □

Also, we find the following result.

Corollary 3.2. Let M be a proper pointwise semi-slant type-1,2 submanifold in nearly para-

Kaehler manifold M̄. Holomorphic distribution DT defines a totally geodesic foliation if and

only if

−ASZPXa +ASRZXa + UXaSZ ∈ Dθ

for any non-null vector fields Xa ∈ Γ(DT ) and Z ∈ Γ(Dθ).

Proof. By using (23), (24) and m3 (b), we get corollary. □

Lemma 3.2. Let M be a proper pointwise semi-slant type-1-2 submanifold in nearly para-

Kaehler manifold (M̄,P, ğ). The distribution DT is holomorphic distribution and distribution

Dθ is slant distribution. Then we get

1) (for type-1)

− sinh2 θğ([Z,W ],Xa) = ğ(ASZPXa −ASRZXa,W )− ğ(UXaZ, SW )

+ ğ(UXaW,SZ)− ğ(ASWPXa −ASRWXa,Z),
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2)(for type-2)

sin2 θğ([Z,W ],Xa) = ğ(ASZPXa −ASRZXa,W )− ğ(UXaZ, SW )

+ ğ(UXaW,SZ)− ğ(ASWPXa −ASRWXa,Z),

for any non-null vector fields Xa,Yb ∈ Γ(DT ) and Z,W ∈ Γ(Dθ).

Proof. 1)(for type-1)

ğ([Z,W],Xa) = −ğ(P∇̄ZW,X a) + ğ(P∇̄WZ,X a) (3.25)

By using the two terms in the right hand side of (25), we obtain

ğ(P∇̄ZW,X a) = ğ(∇̄ZPW,X a)− ğ((∇̄ZP)W,X a)

By using (7),(8) and (9), we have

ğ(P∇̄ZW,X a) = ğ(∇̄ZRW,X a) + ğ(∇̄ZSW,X a)− ğ(GZW,X a)

= −ğ(P∇̄ZRW,PX a)− ğ(ASWZ,X a)− ğ(GZW,X a)

= cosh2θğ(∇̄ZW,PX a)− ğ(∇̄ZSRW,PX a)

+ ğ((∇̄ZP)RW,PX a)− ğ(ASWZ,X a)− ğ(GZW,X a)

= cosh2θğ(∇̄ZW,PX a) + ğ(ASRWZ,PX a)

+ ğ(GZRW,PX a)− ğ(ASWZ,X a)− ğ(GZW,X a). (3.26)

Interchanging W and Z in (26). We have

ğ(P∇̄WZ,X a) = cosh2θğ(∇̄WZ,PX a) + ğ(ASRZW,PX a)

+ ğ(GWRZ,PX a)− ğ(ASZW,X a)− ğ(GWZ,X a). (3.27)

By using (25),(26) and (27), we get

−sinh2θğ([Z,W],Xa) = −ğ(ASRWZ,PX a)− ğ(GZRW,PX a)

+ ğ(ASWZ,X a) + ğ(GZW,X a)

+ ğ(ASRZW,PX a) + ğ(GWRZ,PX a)

− ğ(ASZW,X a)− ğ(GWZ,X a).

By using the symmetry property of the shape operator and interchanging X and PXa for

any Xa ∈ DT , we get

−sinh2θğ1([Z,W],Xa) = −ğ(ASRWXa,Z)− ğ(GZRW,X a)

− ğ(ASWPX a,Z)− ğ(GZW,PX a)

+ ğ(ASRZXa,W) + ğ(GWRZ,X a)

+ ğ(ASZPXa,W) + ğ(GWZ,PX a). (3.28)

Also, by using m4 and m3 (b), we find
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ğ(GWZ,PX a)− ğ(GZW,PX a) = −ğ(GWRZ,X a) + ğ(UWXa, SZ)

+ ğ(GZRW,X a)− ğ(UZXa, SW). (3.29)

By using (2.14) and from (3.28), (3.29), we get proof.

Also, for type-2 the proof is obtained using the same method. □

4. Geometry of Pointwise Semi-Slant Warped Product Submanifolds in

Nearly Para-Kaehler Manifolds

Let (L, ğ1) and (E , ğ2) be two semi-Riemannian submanifold, k : L → (0,∞) and q :

L × E → L, a : L × E → E the projection maps obtained by q(t, p) = t, a(t, p) = p for

all (t, p) ∈ L × E . The warped product M = L ×k E is the manifold L × E with the semi-

Riemannian constructure. In that case,

ğ(Xa,Yb) = ğ1(q∗Xa, q∗Yb) + (k ◦ q)2ğ2(q∗Xa, q∗Yb)

for every Xa and Yb of M where * denotes the tangent map [9]. The function k is called

the warping function. Especially, if the warping function is constant, M is called to be trivial.

For Xa, Yb on L and Vc, Wd vector fields on E . Later, using Lemma 7.3 of [9], we obtain

∇XaVc = ∇VcXa = Vc(lnk) (4.30)

where ∇ is the Levi-Civita connection on K.

Theorem 4.1. Let M̄ be a nearly para-Kaehler manifold. Then, there don’t exist pointwise

semi-slant non-trivial warped product type 1-2 submanifolds M = Mθ ×k MT in nearly

para-Kaehler manifold M̄.

Proof. For type-1, using (3.22), (2.1) (2.2), (2.5), (2.6) and (2.7), we get

Vc(lnk)ğ(Xa,Yb) = ğ(∇X aVc,Yb) = ğ(∇̄X aVc,Yb)

= −ğ(∇̄X aPVc,PYb)

= ğ(∇̄X aR2Vc + SRVc,Yb) + ğ(ASVcXa,PYb).

From (Theorem 3.3.) we obtain

Vc(lnk)ğ(Xa,Yb) = ğ(∇̄X a cosh
2 θVc,Yb) + ğ(∇̄X aSRVc,Yb) + ğ(ASVcXa,PYb)

= sinh 2θXa(θ)ğ(Vc,Yb) cosh
2 θğ(∇̄X aVc,Yb)

− ğ(h̆(Xa,Yb),SRVc) + ğ(h̆(Xa,PYb),SVc).

Since Dθ and DT are orthogonal, using (3.22), we get

− sinh2 θVc(lnk)ğ(Xa,Yb) = −ğ(h̆(Xa,Yb),SRVc) + ğ(h̆(Xa,PYb),SVc).
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In above equation interchanging Xa and Yb, we get

− sinh2 θVc(lnk)ğ(Yb,Xa) = −ğ(h̆(Yb,Xa),SRVc) + ğ(h̆(Yb,PXa),SVc).

If we substract the last two equations from each other, we have

ğ(h̆(Xa,PYb),SVc) = ğ(h̆(Yb,PXa),SVc) (4.31)

ğ(h̆(Xa,PYb),SVc) = ğ(∇̄X aPYb,SVc)

= ğ(P∇̄X aYb,PVc)− ğ(P∇̄X aYb,RVc)

− ğ(∇X aVc,Yb) + ğ(∇X aRVc,PYb).

Using (3.22), we get

ğ(h̆(Xa,PYb),SVc) = Vc(lnk)ğ(Xa,Yb) +RVc(lnk)ğ(Xa,PYb). (4.32)

Using (23), (1), Theorem 2.1 and for Vc = RVc, Xa = PXa we have

0 = RVc(lnk)ğ(Xa,PYb)

= R2Vc(lnk)ğ(PXa,PYb)

= − cosh2 θVc(lnk)ğ(Xa,Yb).

Because of Vc(lnk) = 0, lnk is constant. Proof is complete. Also for type-2, we use in a

similar way. □

Remark 4.1. We express that Theorem (4.1) is a generalization of Theorem (3.1) in [22]

and Theorem (4.1) in [23].

It is clear from the above theorem that there don’t exist pointwise semi slant non-trivial

warped product submanifolds of the first form M = Mθ ×k MT in nearly para-Kaehler

manifolds. Conversely, we demonstrate that there exist of the second form M = MT ×k Mθ

in this part.

Now we write an example with related to the second form M = MT ×k Mθ.

Let M be a semi-Riemannian submanifold of K̄ 20
10 described by the immersion ψ : M →

K̄ 20
10 with the cartesian coordinates (x1 , ..., x20) and the almost para-complex structure

P( ∂
∂xj

) = ∂
∂xj−2

j = (3, 4, 7, 8, 11, 12, 15, 16, 19, 20) and

P( ∂
∂xi

) = ∂
∂xi+2

i = (1, 2, 5, 6, 9, 10, 13, 14, 17, 18). Let K̄ 20
10 be a semi-Riemannian space of

signature (+,+,−,−,+,+,−,−,+,+,−,−,+,−,−,+,+,−,+,−) with the canonical basis

( ∂
∂x1

, ..., ∂
∂x20

).

Example 4.1. M be defined by the immersion ψ as follows

ψ(a, b, c, d) = (a sin c, a cos c, b sin c, b cos c, a sin d, a cos d , b sin d ,

b cos d, x, 2a, y, 2b,
√
2d ,

√
2c, c, d ,

√
3c,

√
3d , x, y)
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ψa = sin c
∂

∂x1
+ cos c

∂

∂x2
+ sin d

∂

∂x5
+ cos d

∂

∂x6
+ 2

∂

∂x10

ψb = sin c
∂

∂x3
+ cos c

∂

∂x4
+ sin d

∂

∂x7
+ cos d

∂

∂x8
+ 2

∂

∂x12

ψc = a cos c
∂

∂x1
− a sin c

∂

∂x2
+ b cos c

∂

∂x3
− b sin c

∂

∂x4
+
√
2

∂

∂x14
+

∂

∂x15
+
√
3

∂

∂x17

ψd = a cos d
∂

∂x5
− a sin d

∂

∂x6
+ b cos d

∂

∂x7
− b sin d

∂

∂x8
+
√
2

∂

∂x13
+

∂

∂x16
+
√
3

∂

∂x18

defines a pointwise semi-slant submanifold M with type-1,2 in (K̄ 20
10 ,P, ğ) para-complex man-

ifold with µ = R2 = 8
(a2−b2)(b2−a2+6))

Actually Dθ = span{ψc, ψd} is pointwise slant distri-

bution and DT = span{ψa, ψb} is invariant distribution.

So, we get that DT and Dθ distributions are integrable. The induced metric tensor ğM on

M = MT ×k Mθ is given by

ğM = 6(da
2 − db

2) + (a2 − b2)(dc
2 + dd

2). Thus,

*) if 0 < (a2 − b2) < 2 or 6 > (a2 − b2) > 4, M is a pointwise semi-slant non-trivial

warped product type-1 submanifold in nearly para-Kaehler manifold K̄ 20
10 with warping func-

tion k =
√

(a2 − b2).

*) if 2 < (a2 − b2) < 4 M is a pointwise semi-slant non-trivial warped product type-2

submanifold in nearly para-Kaehler manifold K̄ 20
10 with warping function k =

√
(a2 − b2)

We now give below lemmas for later use.

Lemma 4.1. Let M = MT ×k Mθ be a pointwise semi-slant non-trivial warped product

type-1,2 submanifold in nearly para-Kaehler manifold M̄. In that case, we get

(i) ğ(h̆(Xa,Yb),SVc) = 0

(ii) ğ(h̆(PXa,Z),SZ) = (Xalnk)cosh
2θ||Z||2 (for type-1)

ğ(h̆(PXa,Z),SZ) = (Xalnk)cos
2θ||Z||2 (for type-2)

(iii) ğ(h̆(Xa,Z),SZ) = −(PXalnk)cosh
2θ||Z||2 (for type-1)

ğ(h̆(Xa,Z),SZ) = −(PXalnk)cos
2θ||Z||2 (for type-2)

for Xa,Yb ∈ Γ(DT ) and Vc,Z ∈ Γ(Dθ).

Proof. Using (2.7), (2.1) and (2.2) we get

ğ(h̆(Xa,Yb),SVc) = ğ(∇XaPYb,Vc) + ğ(∇XaYb,RVc).

From (30) and because of PYb with Vc and RVc with Yb orthogonality, we obtain

ğ(h̆(Xa,Yb),SVc) = Xa(lnk)ğ(PYb,Vc) + Xa(lnk)ğ(Yb,RVc) = 0.
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Proof is complete and we get proof of equation (ii) and (iii) with smilar way.

If we interchange Z by RZ in (ii) and (iii), we obtain

ğ(h̆(PXa,RZ),SRZ) = (Xalnk)cosh
2θ||Z||2(type− 1), (4.33)

ğ(h̆(PXa,RZ),SRZ) = (Xalnk)cos
2θ||Z||2(type− 2) (4.34)

and

ğ(h̆(Xa,RZ),SRZ) = −(PXalnk)cosh
2θ||Z||2(type− 1), (4.35)

ğ(h̆(Xa,RZ),SRZ) = −(PXalnk)cos
2θ||Z||2(type− 2). (4.36)

□

Now, using the above lemma, we get the following results.

Corollary 4.1. Let M = MT ×kMθ be pointwise proper semi-slant warped product type-1,2

submanifold in nearly para-Kaehler manifold M̄. In that case, we obtain

ğ(h̆(Xa,RZ),SZ) = −ğ(h̆(Xa,Z),SRZ) = −1

3
(Xalnk)cosh

2θ||Z||2(type− 1) (4.37)

and

ğ(h̆(Xa,RZ),SZ) = −ğ(h̆(Xa,Z),SRZ) = −1

3
(Xalnk)cos

2θ||Z||2(type− 2) (4.38)

for Xa ∈ ΓDT and Vc,Z ∈ ΓDθ.

If we replace Xa by PXa in (37) and (38), we get

ğ(h̆(PXa,RZ),SZ) = −ğ(h̆(PXa,Z),SRZ) = −1

3
(PXalnk)cosh

2θ||Z||2(type− 1) (4.39)

and

ğ(h̆(PXa,RZ),SZ) = −ğ(h̆(PXa,Z),SRZ) = −1

3
(PXalnk)cos

2θ||Z||2(type− 2). (4.40)

Theorem 4.2. Let M be a pointwise semi-slant type-1,2 submanifold of nearly para-Kaehler

manifold M̄. In that case, M is locally a non-trivial warped product submanifold M =

MT ×k Mθ, such that, MT is a holomorphic submanifold and Mθ is a pointwise slant

submanifold in M̄ If the following situation is satisfied

for type-1

ASRZXa −ASZPXa = (1− 1

3
cosh2 θ)Xa(γ)Z (4.41)

for type-2

ASRZXa −ASZPXa = (1− 1

3
cos2 θ)Xa(γ)Z (4.42)

where γ = lnk is a function on M so that Z(γ) = 0 for any Xa ∈ Γ(DT ), Z ∈ Γ(Dθ).

Proof. Let M = MT ×k Mθ be a proper pointwise semi-slant non-trivial warped product

type-1 submanifold in nearly para-Kaehler manifolds M̄. In that case, from (2.1), (2.5), (2.7)

and Lemma 4.4, we get

ğ(ASZPXa,Yb) = 0 (4.43)
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ğ(ASZPXa,Z) = (Xaγ)||Z||2 (4.44)

ğ(ASRZXa,Z) =
1

3
(Xaγ) cosh

2 θ||Z||2 (type− 1) (4.45)

Vc,Z ∈ Γ(Dθ) and Xa,Yb ∈ Γ(DT ) which specifies that ASZPXa with related to Dθ. On

the contrary, accept that M is a pointwise semi-slant type-1 submanifold of nearly para-

Kaehler manifold M̄ and using (44) and (45), we get

ğ(ASRZXa −ASZPXa) = (1− 1

3
cosh2 θ)Xa(γ)Z. (4.46)

So, we get (4.41). Then from Lemma 3.1 (2), Dθ is integrable and from Lemma 3.2 (1), DT

is totally geodesic. Let Mθ be the integral manifold of Dθ. Because of Weingarten operator

AN is self-adjoint and using (2.1),(2.2),(2.5) and (2.7) we have

ğ(ASRVcXa −ASVcPXa,Z) = −ğ(∇̄XaSRVc,Z)− ğ(∇̄PXaSVc,Z)

+ UXaYb,SZ

= −ğ(Xa, ∇̄ZPSVc)

= −ğ(Xa,∇ZR2Vc)− ğ(Xa,∇ZVc).

Using (2.18) for type-1 we get

ğ(ASRVcXa −ASVcPXa,Z) = 2 cosh θ sinh θZ(θ)ğ(Xa,Vc)

+ (−1 + cosh2 θ)ğ(Xa,∇ZVc)

= sinh2 θğ(Xa,∇ZVc).

Using (2.2) we get

ğ(ASRVcXa −ASVcPXa,Z) = sinh2 θ(Xa, h̆θ(Vc,Z)). (4.47)

Then (4.46) indicate that

h̆θ(Vc,Z) = (
1

3
+

2

3
cosech2θ)∇γ ğ(Vc,Z)

which indicate that Mθ is a totaly umbilical submanifold in M with the mean curvature

vector field (13 + 2
3cosech

2θ)∇γ , where ∇γ is the gradient of γ.

Conversely, by direct calculations, we have

ğ(∇Vc∇γ ,Xa) = [Vcğ(∇γ ,Xa)− ğ(∇γ ,∇VcXa)]

= [Vc(Xa(γ))− [Vc,Xa]γ − ğ(∇γ ,∇XaVc)]

= [Vc,Xa]γ + Xa(Vc(γ))[Vc(Xa(γ))− [Vc,Xa]γ − ğ(∇γ ,∇XaVc)]

= [Xa(Vc(γ))[Vc(Xa(γ))− ğ(∇γ ,∇XaVc)].

Because of Vc(γ) = 0, we get

ğ(∇Vc∇γ ,Xa) = ğ(∇γ ,∇XaVc).

Conversely, since ∇γ ∈ Γ(TMT ) and MT is totally geodesic in M, it shows that ∇XaVc ∈
Γ(TMθ) for Vc ∈ Γ(Dθ), Xa ∈ Γ(DT ). So, ğ(∇Vc∇γ ,Xa) = 0. Then the sphrecial situation



CALCULATION (2025) 1(1):2–18 / WARPED PRODUCT POINTWISE SEMI-SLANT SUBMANIFOLDS 15

is also accomplished, that is Mθ is an extrinsic sphere in M. So, proof is complete.

Using a similar way, the result is also obtained for type-2. □

5. An Optimal Inequality

We first indicate an orthonormal frame. Let M = MT ×k Mθ be a (m + n) dimensional

pointwise semi-slant warped product submanifold a (m + 2n)-dimensional M̄ nearly para-

Kaehler manifold. We give orthonormal frames according to type-1 and type-2. Firstly for

type-1, we indicate the orthonormal frames respectively;

{E1, .., Em, Ē1, ..., Ēn, E∗1, ..., E∗n} of M̄ so that, restricted to M, {E1, ..,Em, Ē1, ..., Ēn} are tan-

gent to M. So {E1, .., Em, Ē1, ..., Ēn} form an orthonormal frame of M. We can indicate

{E1, .., Em, Ē1, ..., Ēm} in such a way that {E1, .., Em} form an orthonormal frame of DT and

{Ē1, ..., Ēn} form an orthonormal frame of Dθ, where dim(DT ) = m and dim(Dθ) = n.

We can indicate {E∗1, ..., E∗n} as an orthonormal frame of S(Dθ). In that case, n = 2p and

orthonormal frames are {Ē1, ..., Ē2p} of (Dθ) and {E ∗
1 , ...,E

∗
2p} of S(Dθ).

Ē2 = sechθRĒ1, ..., Ē2p = sechθRĒ2p−1, (type− 1)

Ē∗1 = cschθSĒ1, ..., Ē∗2p = cschθSĒ2p, (type− 1)

We assume that

* on DT : orthonormal basis {Ev}v=1 ,...,m, where m = dim(DT ); also, supposed that

ğ(Ev, Ev) = 1.

* on Dθ : orthonormal basis {E∗w}w=1 ,...,n. n = dim(Dθ) also ğ(E∗w, E
∗
w) = ∓1.

* on PDT : orthonormal basis {Ev}v=1 ,...,m, where d1 = dimP(DT ) also ğ(PEv,PEv) = −1.

* on SDθ : orthonormal basis {E∗w}w=1 ,...,n, where n = dimS(Dθ) also ğ(E∗w, E
∗
w) = ∓1.

Theorem 5.1. Let M be a (m+ n) dimensional pointwise semi-slant type-1 warped product

submanifold M = MT ×k Mθ in nearly para-Kaehler manifold M̄m+2n , where Mθ is a

proper pointwise slant submanifold and MT is a invariant submanifold of M. Assume that

MT is spacelike. So, we get

1)

||h̆||2 ≤ 4n(csch2 θ +
1

9
coth2 θ)||grad(lnk)||2 , dim(Kθ) = n (5.48)

where grad(lnk) is the gradient of lnk.

2) If the equality sign of (5.48) holds the same way, Mθ is totally umbilical and MT is

totally geodesic in M̄. Also, M is minimal submanifold of M̄.

Proof. From description ||h̆1||2 = ||h̆1(Dθ,Dθ)||2 + 2||h̆1(Dθ,DT )||2 + ||h̆1(DT ,DT )||2 . We

get

||h̆||2 =

m+2p∑
k=1

m∑
v,w=1

ğ(h̆(Ev, Ew), E
∗
k)

2 +

m+2p∑
k=1

2p∑
r ,s=1

ğ(h̆(Ēr, Ēs),E
∗
k )

2

+ 2

m+2p∑
k=1

2p∑
r=1

m∑
v=1

ğ(h̆(Ev, Ēr),E
∗
k )

2
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where {E ∗
k } is an orthonormal basis of T M⊥. Accepted the adapted frame, we will indicate

above equation as

||h̆||2 =

2p∑
a=1

2p∑
v,w=1

ğ(h̆(Ev, Ew), cschθSĒa)2 +
2p∑

a,r,s=1

ğ(h̆(Ēr, Ēs), cschθSĒa)2

+ 2
m∑
v=1

2p∑
a,r=1

ğ(h̆(Ēr, Ev), cschθSĒa)2.

By using( (37) and ( 39), we obtain

||h̆||2 =

2p∑
a,r,s=1

ğ(h̆(Ēr, Ēs), cschθSĒa)2 + 2
m∑
v=1

2p∑
a,r=1

(cschθ)2[(PEv(lnk))ğ(Ēr, Ēa))2

+ 2PEv(lnk)ğ(Ēr, Ēa)Ev(lnk)(Ēr,RĒa) + (Ev(lnk)ğ(Ēr,RĒa))
2].

Thus

m∑
v=1

2p∑
a,r=1

PEv(lnk)ğ(Ēr, Ēa)Ev(lnk)ğ(Ēr,RĒa)

=

m∑
v=1

2p∑
a,r=1

ğ(grad(lnk),PEv)ğ(grad(lnk), Ev)ğ(Ēr, Ēa)ğ(Ēr,RĒa)

= −
2p∑

a,r=1

[
m∑
v=1

ğ(ğ(grad(lnk), Ev)Ev,Pgrad(lnk))]ğ1(Ēr, Ēa)ğ(Ēr,RĒa) = 0.

By using (33), (35) and lemma 4.4, the above equation will be simlified as

||h̆1||2 =

2p∑
a,r,s=1

ğ(h̆(Ēr, Ēs), cschθSĒa)2 + 4n||grad(lnk)||2[csch2θ + 1

9
coth2θ].

So, we get the inequality (48). Also the equality sign of (48) gives, we get

2p∑
a=1

2p∑
r,s=1

ğ(h̆(Ēr, Ēs), cschθSĒa)2 = 0. (5.49)

Since MT is a totally geodesic in M, (4.46) equation specifies that MT is totally geodesic

in M̄. Also, (5.49) equation specifies that h̆ vanishes on Dθ. Because of Dθ is a spherical

distribution in M, we reach that Mθ is a totally umbilicial submanifold of M̄. Also, using

(4.46) and (5.49), we reach that M is minimal in M̄. □

Remark 5.1. If the manifold Mθ in the above theorem is timelike, in that case, (48) should

be changed by

||h̆||2 ≥ 4n(csch2 θ +
1

9
coth2 θ)||grad(lnk)||2 , dim(Kθ) = n (5.50)
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where grad(lnk) is the gradient of lnk.

Similarly, if pointwise slant submanifold Mθ is type-2 , we achieve.

Theorem 5.2. Let M be a (m + n)-dimensional pointwise semi-slant warped product sub-

manifold M = MT ×k Mθ in nearly para-Kaehler manifold M̄m+2n. Assume that, Mθ is

spacelike and timelike, respectively. In that case, (for type-2)

||h̆||2 ≤ 4n(
1

9
cot2θ + csc2θ)||grad(lnk)||2 (5.51)

(respectively, ||h̆||2 ≥ 4n(
1

9
cot2θ + csc2θ)||grad(lnk)||2 ) (5.52)

where grad(lnk) is the gradient of lnk.
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[15] Gündüzalp, Y., & Polat, M. (2022). Some inequalities of anti-invariant Riemannian submersions in com-

plex space forms. Filomat, 23 (2), 703–714.

[16] Hiepko, S. (1979). Eine inner kennzeichung der verzerrten produkte. Mathematische Annalen, 241, 209–

215.



18 S. AYAZ AND Y. GÜNDÜZALP
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