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INTEGRABILITY FOR THE DERIVATIVE FORMULAS OF THE TYPE-2

BISHOP FRAME AND ITS APPLICATIONS
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Abstract. The main objective of the work is to examine the integrability of the derivative

formulae for the type-2 Bishop frame in three-dimensional Euclidean space. We use the

coordinate system introduced in [12], which allows for the examination of integration. As

an application, we analyze the position vectors of certain curves that are important in

mathematics and physical study.
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1. Introduction

The theory of curves has gone through a long period of development until it reaches a

truly modern manner: from the theory of plane curves, with the beginning of calculus, in

1684, the year in which Gottfried Wilhelm Leibniz created it in his Meditaito nova de natura

anguli contactus et osculi, to the theory of space curves, reached to the peak point with

the infinitesimal calculus. In this development, we have to mention two important things.

The first one is the notion of moving frame, as we know it today, created by Gaston Dar-

boux. The second one is the term binormal mentioned in a treatise on space curves by Barre

de Saint-Venant. The Frenet frame is a well-known example of a moving frame utilized to

describe a space curve in three-dimensional ambient spaces, including Euclidean and Lorentz-

Minkowski spaces. The Frenet equations, or Frenet formulae, were first proposed in 1831 by

Karl Eduard Senff and Johann Martin Bartels, enhancing the simplicity and utility of the

theory of space curves. The scientists were once again discussed in Jean Frederic Frenet’s

thesis in 1847, published in 1852. Shortly thereafter, those equations were independently dis-

covered by Joseph Alfred Serret in 1851 and are sometimes referred to as the Frenet-Serret

equations (for more information at this early stage in history, , see [7]). On the other hand,

mathematicians have done a great number of surveys involving the concept of binormal. But

it was not until 2010 that the survey of the first moving frame established by the binormal

was published by Yılmaz and Turgut. The authors were the first to create the idea of the
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moving frame in a more novel manner than usual in their ”A new version of Bishop frame

and an application to spherical images.” The main principle is that they do this using a

common vector field as the binormal vector field of Frenet-Serret frame (for details, see [9]).

Later, an analogue of this survey is done in Lorentz-Minkowski 3-space. [8, 10]

The determination of the position vector field of a smooth curve with a certain prop-

erty—that is, a slant helix, where the principal normal vector field forms a constant angle

with a fixed straight line—was investigated in 2010 by Ali and Turgut. They discovered

a third-order vector differential equation. By solving the vector differential equation, they

obtained the position vector field of a timelike slant helix in Minkowski space, where the

straight line is parallel to e3 [1]. Refer to [2] for slant helices in Euclidean 3-space. In

2011, researchers conducted analogous investigations to ascertain the position vector field of

a generic helix using both the Frenet and standard frames in Euclidean three-dimensional

space [3]. Refer to [4, 5] for timelike and spacelike generic helices in Minkowski 3-space.

In the past two decades, the problem of determining the position vectors has emerged

as an attractive field of study. In recent years, Yerlikaya and his coauthor [12, 13] have

approached this problem from a different perspective than those mentioned in the literature.

This approach is based on a new coordinate system that will facilitate the integrability of

derivative formulas of the Bishop frame. Inspired by these studies, we focus on that of the

type-2 Bishop frame and examine the position vector field of several special curves.

2. Preliminaries

When the real vector space R3 is endowed with the standard flat metric, known as the

Euclidean metric, represented by g = dx21 + dx22 + dx23, the corresponding space is known as

Euclidean space and denoted as E3, where (x1, x2, x3) constitutes the usual coordinate system

of E3. The norm of an arbitrary vector w ∈ E3 is defined as ∥u∥ =
√

g(u, u). Furthermore,

given two non-zero vectors a = (a1, a2, a3) and b = (b1, b2, b3) in E3, it is important to note

that the cross product of u and v is denoted as

a× b =

∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ .
Let γ : J → E3 be a smooth curve parametrized by the arbitrary parameter t, where J is

an open subset of R . The curve γ is referred as a unit speed curve parametrized by the arc

lenght s if its velocity vector γ′, the first derivative of the curve, fulfills the condition ∥γ′∥ = 1.

The parameter of γ shall hereafter be denoted as s. In Euclidean 3-space, the Frenet-Serret

frame along the curve γ, denoted by {t, n, b}, has the derivative formula expressed as t′

n′

b′

 =

 0 κ 0

−κ 0 τ

0 −τ 0


 t

n

b

 ,

where the curvature and the torsion functions of γ are denoted by κ and τ , respectively.
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The derivative formulae for the type-2 Bishop frame represented by {ζ1, ζ2, b} along γ are

as follows:  ζ ′1
ζ ′2
b′

 =

 0 0 −ϵ1

0 0 −ϵ2

ϵ1 ϵ2 0


 ζ1

ζ2

b

 , (2.1)

where ϵ1 and ϵ2 are the type-2 Bishop curvature functions of γ and ζ1, ζ2 are arbitrary unit

vector fields in E3. The geometric apparatus between the type-2 Bishop frame and the

Frenet-Serret frame, which we referred to before, is given by t

n

b

 =

 cos θ(s) − sin θ(s) 0

sin θ(s) cos θ(s) 0

0 0 1


 ζ1

ζ2

b

 , (2.2)

κ = −θp(s), τ =
√
ϵ21 + ϵ22, (2.3)

where θ(s) = arctan
(
ϵ1
ϵ2

)
. Note that the above apparatus differs from that of the study of

Yılmaz and Turgut [9]. By Eq. (2.3) and the angle θ, there exists the following theorem:

Theorem 2.1. [6] Let γ = γ(s) be a smooth curve with curvatures ϵ1 ̸= 0 and ϵ2 ̸= 0. γ is

a general helix if and only if type-2 Bishop curvatures of the curve satisfy

ϵ21(
ϵ21 + ϵ22

) 3
2

(
ϵ2
ϵ1

)p
= constant.

Remark 2.1. A necessary condition for the type-2 Bishop frame to exist at all points along a

curve is that the curvature of the curve should not be zero. If κ = 0, then the principal normal

vector field of the curve denoted by n becomes (0, 0, 0). This means that the binormal vector

field b becomes (0, 0, 0). This causes a contradiction in the fact that the system {ζ1, ζ2, b} is

orthogonal.

3. Conclusion

Let E3 endow the Euclidean 3-space and its basis beB = {e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1)}.
Let the coordinates of a vector relative to the basis B be {x1, x2, x3}. In [12], the authors

established an ordered orthonormal basis B′′ = {e′′1, e′′2, e′′3} and the corresponding new coor-

dinate system {x′′1, x′′2, x′′3} such that

e′′j =
e′′3×ei

∥e′′3×ei∥ , j = 1, 2 i = 1, 2, 3

(
e′′j × e′′3

)
=

{
−e′′2 , j = 1

e′′1 , j = 2.

Let γ : I → E3 be a smooth curve parameterized by arc length s, where s ∈ I, and its

type-2 Bishop apparatus {ζ1, ζ2, b, ϵ1, ϵ2} at the point γ(s). Let us consider an any curve
−
γ obtained from γ through a rigid motion, in such a way that the binormal vector field

−
b

at the point
−
γ(s0) of

−
γ aligns with e′′3. Consequently, due to this motion,

−
ζ1 and

−
ζ2 sit in

the plane defined by e′′1 and e′′2. The other vector fields of
−
γ are designated as

−
ζ1 and

−
ζ2,
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respectively. Consequently, it is appropriate to discuss the transition matrix between the

systems

{
−
ζ1,

−
ζ2,

−
b

}
and {e1′′, e2′′, e3′′}, which is structured as follows:

−
ζ 1
−
ζ 2
−
b

 =

 cosµ(s) − sinµ(s) 0

sinµ(s) cosµ(s) 0

0 0 1


 e′′1

e′′2
e′′3

 , (3.4)

where the angle between the vector fields
−
b and e′′3 denotes µ.

Furthermore, it is noteworthy that the rigid motion transforming
−
γ(s0) into γ(s0) and

−
ζ1,

−
ζ2,

−
b into ζ1, ζ2, b is, in fact, identical to the aforementioned rigid motion. Hence, we write

ζ1 =
−
ζ1, ζ2 =

−
ζ2, b =

−
b

for any s = s0.

By establishing i = 2 and j = 2 by the argument that e′′3 = b = (b1, b2, b3), we derive

e′′1 =
1√

1− b22

(
−b1b2, 1− b22,−b2b3

)
(3.5)

and

e′′2 =
1√

1− b22
(−b3, 0, b1) . (3.6)

Theorem 3.1. Let {e1′′, e2′′, e3′′} be the new ordered orthonormal basis obtained from the

natural ordered orthonormal basis of E3 and ϵ1(s), ϵ2(s) be differentiable functions, where s

belongs to an open interval in R. According to the new coordinate system, the binormal vector

field b = (b1, b2, b3) in an indirect solution triplet of Eq. (2.1), which is determined by Eqs.

(3.7) and (3.8) is given by

b1(s) = cos f1(s) cos f2(s)

b2(s) = sin f1(s)

b3(s) = cos f1(s) sin f2(s)

where

f1(s) = c1 +

∫
(cosµ(s) ϵ1(s) + sinµ(s) ϵ2(s)) ds, (3.7)

f2(s) = c2 +

∫
− sinµ(s) ϵ1(s) + cosµ(s) ϵ2(s))

cos f1(s)
ds (3.8)

and c1, c2 are constants.

Proof. Let {e1′′, e2′′, e3′′} be the new ordered orthonormal basis derived from the natural

ordered orthonormal basis in the Euclidean 3-space. Thus, Eqs. (3.5) and (3.6) are valid.

Using Eq. (3.4), a relationship between type-2 Bishop vector fields and the vector fields of
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the new system is appeared as

ζ1(s) = cosµ(s) e1
′′(s)− sinµ(s) e2

′′(s)

ζ2(s) = sinµ(s) e1
′′(s) + cosµ(s) e2

′′(s).
(3.9)

We will now compute the elements of the binormal vector field b(s). Substituting Eqs. (3.5)

and (3.6) into Eq. (3.9) and putting it into Eq. (2.1), we get

db1
ds

=
−1√
1− b22

[
{ cosµ(s) ϵ2 − sinµ(s) ϵ1} b3 + { cosµ(s) ϵ1 + sinµ(s) ϵ2} b1b2

]
(3.10)

db2
ds

= {cosµ(s) ϵ1 + sinµ(s) ϵ2}
√
1− b22, (3.11)

db3
ds

=
−1√
1− b22

[
{ sinµ(s) ϵ1 − cosµ(s) ϵ2} b1 + { cosµ(s) ϵ1 + sinµ(s) ϵ2} b2b3

]
(3.12)

Due to the fact that Eq. (3.11) is a type of separable equations, it is simpler to solve com-

pared to other equations, and as a result, the answer ends up being

b2 = sin

[
c1 +

∫
( cosµ(s) ϵ1 + sinµ(s) ϵ2) ds

]
︸ ︷︷ ︸

=f1(s)

. (3.13)

On the other hand, especially since Eqs. (3.10) and (3.12) are non-linear differential equa-

tions, it is beneficial to introduce a new variable g(s) rather than solving them directly, which

adheres to the following situation:

b21 + b22 + b23 = 1,

from which

b1 = cos f1(s) cos f2(s), b3 = cos f1(s) sin f2(s). (3.14)

Substituting Eqs. (3.13) and (3.14) into Eq. (3.10), we obtain

f2(s) = c2 +

∫
(− sinµ(s) ϵ1 + cosµ(s) ϵ2)

cos f1(s)
ds, (3.15)

which completes the proof.

□

The other important that this work will attain can be understood by finding its tangent

vector field for the position vector field of a curve. By the proposition that we have just

achieved, it may easily be calculated:

For this, we begin by getting the type-2 Bishop vector fileds ζ1 and ζ2. Substituting Eqs.

(3.5) and (3.6) into Eq. (3.9), for ζ1 = (ζ11 , ζ12 , ζ13) and ζ2 = (ζ21 , ζ22 , ζ23), we get

ζ11 = sinµ(s) sin f2(s)− cosµ(s) sin f1(s) cos f2(s) (3.16)

ζ12 = cosµ(s) cos f1(s) (3.17)
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ζ13 = − cosµ(s) sin f1(s) sin f2(s)− sinµ(s) cos f2(s) (3.18)

and

ζ21 = − sinµ(s) sin f1(s) cos f2(s)− cosµ(s) sin f2(s) (3.19)

ζ22 = sinµ(s) cos f1(s) (3.20)

ζ23 = cosµ(s) cos f2(s)− sinµ(s) sin f1(s) sin f2(s). (3.21)

From Eq. (2.2) taking into account ζ1 and ζ2, we have the following remark.

Remark 3.1. When referring to the position vector field, represented as γ, it is important

to remember the following equation:
dγ

ds
= t. (3.22)

With this relation, it is more convenient to perform the operation with the tangent vector

field than the binormal vector field. Referring to the proposition 3.1, we have the following

relations:

t1 =
−1√
ϵ21 + ϵ22

(
sin f1 cos f2 {ϵ2 cosµ− ϵ1 sinµ} − sin f2 {ϵ1 cosµ+ ϵ2 sinµ}

)

t2 =
cos f2√
ϵ21 + ϵ22

(
{ϵ2 cosµ− ϵ1 sinµ}

)
(3.23)

t3 =
−1√
ϵ21 + ϵ22

(
sin f1 sin f2 {ϵ2 cosµ− ϵ1 sinµ}+ cos f2 {ϵ1 cosµ+ ϵ2 sinµ}

)

4. Applications

Some remarkable curves share the characteristic that a vector field makes a constant an-

gle with a fixed line in space. In the type-2 Bishop frame, two curves exhibit the specified

property:

Inclined Curve: A smooth curve is classified as an inclined curve if the vector field ζ1 (or ζ2)

within its osculating plane forms a constant angle with a fixed line in space. It is analyti-

cally defined by the constancy of the ratio of Bishop curvatures ϵ1 and ϵ2, as presented by

Özyılmaz in the Euclidean 3-space E3. [6].

Darboux Helix: A smooth curve is classified as a Darboux helix if the Darboux vector

w = −ϵ2ζ1 + ϵ1ζ2 makes a constant angle with a fixed line in space. The curvatures ϵ1

and ϵ2 of a Darboux helix adhere to the subsequent equation:(
ϵ21 + ϵ22

) 3
2

ϵ21

1(
ϵ2
ϵ1

)p = constant (4.24)

[11]. In Eq. (4.24), remark that the ratio ϵ2
ϵ1

must not be constant. According to the theorem

(2.1), an inclined curve is a general helix, but not a Darboux helix.



136 E. ERGÜN

A new coordinate system is presented in the preceding section, facilitating the integrabil-

ity of the derivative formulas for the type-2 Bishop frame. This results in a theorem that

demonstrates only one of the triplets of the indirect solutions of Eq. (2.1). In this section, we

examine the necessary conditions for the indirect solution to achieve stability. Alternatively,

we assess the nature of the integration measure.

It is widely recognized that the curvatures of a curve remain constant until a rigid motion

is encountered. Consequently, the type-2 Bishop curvatures
−
ϵ1 and

−
ϵ2 of

−
r must satisfy the

subsequent conditions:

ϵ1 =
−
ϵ1, ϵ2 =

−
ϵ2,

where ϵ1 and ϵ2 are the type-2 Bishop curvature functions of r.

From the theorem (3.1), we have Eqs. (3.16) and (3.19) mentioned the previous section.

Consequently, we seek to determine the curvatures
−
ϵ1 and

−
ϵ2, respectively. By differentiating

Equation (3.16) with regard to s, we obtain

−
ϵ1 =

√(
dµ

ds
− sin f1

df2
ds

)2

+ ϵ21. (4.25)

Similarly, it is evident that another curvature is represented by

−
ϵ2 =

√(
dµ

ds
− sin f1

df2
ds

)2

+ ϵ22. (4.26)

Lemma 4.1. Let γ(s) be a curve in the Euclidean 3-space and let s be its arc length parame-

ter. Assume that the differentiable functions ϵ1(s) and ϵ2(s) be the type-2 Bishop curvatures

of γ. If the following relation holds

dµ

ds
− sin f1(s)

df2
ds

= 0, (4.27)

then there exist ”steady” solutions satisfying Eq. (2.1), where f1(s) and f2(s) are given by

Eqs. (3.7) and (3.8), respectively.

Based on Lemma 4.1, we can examine two possible situations.

Case 1: Assuming µ = constant, Eq. (4.27) is simplified to

sin f1(s)
df2
ds

= 0. (4.28)

Suppose that sin f1(s) equals zero. Thus, we have f1 = 0 or f1 = 2πk, k ∈ Z. Conse-

quently, the integrand in Eq. (3.7) may be considered as

cosµ ϵ1(s) + sinµ ϵ2(s) = 0. (4.29)
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The following statements are deduced from the last equality.

• when sinµ = 0 (or cosµ = 0), we have ϵ1 = 0 (or ϵ2 = 0). This never occurs.

• If sinµ ̸= 0 and cosµ ̸= 0, the resulting position vector field is an inclined curve with

ϵ2
ϵ1

= − cotµ.

Note that the function f2(s) can be determined from the aforementioned relation using

Eq.(4.29), specifically f2(s) = c2 +
−1
sinµ

∫
ϵ1(s) ds. Furthermore, when the position vector

field refers to an inclined curve, its straight line can determine d = (a, b, c) with the help of

Eq. (3.16):

⟨ζ1, d⟩ = − cosµ b+ sinµ {a sin f2(s)− c cos f2(s)}

The concept of inclined curves indicates that the necessary and sufficient condition for the

previous inner product to remain constant is the achievement of the following relations.

a sin f2(s)− c cos f2(s) = 0,

b = ±1.

Hence, we obtain d = (0,±1, 0). This provides knowledge about the plane where the straight

line is spanned.

In light of this information, the position vector field of an inclined curve having a straight

line spanned by e2 is computed using Eq.(3.23) as the following:

γ(s) = (d1, d2s, d3) , (4.30)

where di (i = 1, 2, 3) is a constant of integration. The last equality expresses to us that the

above position vector field is a geodesic, which gives rise to a contradiction with the creation

of the type-2 Bishop frame according to Remark 2.1.

Let df2
ds = 0. Thus, it is evident that f2 = constant. Hence, the integrand in Eq. (3.8) is

− sinµ ϵ1(s) + cosµ ϵ2(s) = 0. (4.31)

The following statements are deduced from the last equality.

• when cosµ = 0 (or sinµ = 0), we have ϵ1 = 0 (or ϵ2 = 0). This never occurs.

• If sinµ ̸= 0 and cosµ ̸= 0, the resulting position vector field is an inclined curve with

ϵ2
ϵ1

= tanµ.

Using Eq.(4.29), we can get the function f1(s) as follows: f1(s) = c1 +
1

cosµ

∫
ϵ1(s) ds. Also,

if the position vector field corresponds to an inclined curve, its straight line may compute

d = (a, b, c) with the help of Eq. (3.16).

⟨ζ1, d⟩ = cosµ sin f1 {−a cosm− c sinm} − cosµ cos f1 b+ sinµ {a sinm− c cosm} ,

where m depends on the constantity of f2. From the definition of inclined curves, the

previously mentioned dot product remains constant if and only if the subsequent relations
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are satisfied.:

a cosm+ c sinm = 0,

a sinm− c cosm = 1,

b = 0,

from which we get d = (sinm, 0,− cosm). This provides details about the plane where the

straight line is located.

Similarly, it is easy to see the position vector field of an inclined curve having a straight

line spanned by e1 and e3 as the following:

γ(s) = (sinm s, d1, cosm s) .

This causes a contradiction for the same reason. Thus, we have the following result:

Corollary 4.1. There does not exist any inclined curve with the type-2 Bishop curvatures

ϵ1(s) and ϵ2(s) in E3.

For the last one, we have

Case 2: When µ is not constant, three subcases emerge as

• f1 = constant, f2 = constant

• f1 ̸= constant, f2 = constant

• f1 = constant, f2 ̸= constant

Upon analyzing the first two items, we identify a contradiction with the claim that

µ ̸= constant. As a result, these subcases do not happen. We will now analyze the last

item.

By the constancy of the function f1, we have the following.

cosµ(s)ϵ1(s) + sinµ(s)ϵ2(s) = 0. (4.32)

Combining the previous equation and Eq. (3.8), we get the function f1 as

c2 +
−1

n

∫ √
ϵ21(s) + ϵ22(s) ds, (4.33)

where n = cos c1. Hence, Eq. (4.27) becomes

dµ

ds
+m

√
ϵ21(s) + ϵ22(s) = 0, (4.34)

from which we get

µ(s) = −m

∫ √
ϵ21(s) + ϵ22(s) ds, (4.35)

where m =
√
1−n2

n . From Eqs. (4.32) and (4.35), we obtain

m =
ϵ21

(
ϵ2
ϵ1

)p

(
ϵ21 + ϵ22

) 3
2

. (4.36)
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Since the ratio of ϵ2(s) to ϵ1(s) is non-constant due to Eq. (4.32), we have m ̸= 0. Therefore,

Eq. (4.36) is

1

m
=

(
ϵ21 + ϵ22

) 3
2

ϵ21

1(
ϵ2
ϵ1

)p = constant.

By substituting Eqs. (4.32) and (4.33) into Eq. (3.23) with the help of Eq. (4.24), we get

the position vector of a Darboux helix.

Proposition 4.1. Let γ be a Darboux helix in E3 and ϵ1(s), ϵ2(s) be its type-2 Bishop

curvatures. Thus, its position vector field is calculated:

γ(s) =

(
−
√
1− n2

∫
cos

(
c2 +

∫
p(s) ds

)
ds+ d1, ns+ d2,

−
√
1− n2

∫
sin

(
c2 +

∫
p(s) ds

)
ds+ d3

)
,

where p(s) = −1
n

∫ √
ϵ21(s) + ϵ22(s)ds and n ̸= 1, c2 and di for i = 1, 2, 3 are constant.

Example 4.1. Substituting ϵ1 (s) = tan
(
arcsin s

5

)
and ϵ2 (s) = 1 in Proposition 4.1, we get

the position vector of Darboux helix in the sense of type-2 Bishop frame as follows:

r(s) =

(√
26

26
s+ d1,

5√
26

∫
cos

[
c2 −

√
26 arcsin

s

5

]
ds+ d2,

5√
26

∫
sin

[
c2 −

√
26 arcsin

s

5

]
ds+ d3

)
.

Plotting for d1 = d2 = d3 = c2 = 0, we have the following figure.

Figure 1. The Darboux helix with k1(s) = tan(arcsinms), k2(s) = 1 for m = 1
5

Remark 4.1. Taking n = 1 in the aforementioned statement shows that the position vector of

the Darboux helix is expressed as Eq. (4.30). In light of theorem 2.1, we derive the following

corollary based on result 4.1.
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Corollary 4.2. A Darboux helix with the type-2 Bishop curvature functions ϵ1(s) and ϵ2(s)

in E3 is a general helix, vice versa.

Remark 4.2. This study examines the outcomes when i = 2. The geometric interpretation

of the results for i = 1 and i = 3 refers to the displacement of the components of the curve.
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