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TAUBERIAN THEOREMS IN NEUTROSOPHIC N-NORMED LINEAR
SPACES VIA STATISTICAL CESARO SUMMABILITY

P. JENIFER , M. JEYARAMAN *, AND S. JAFARI

Abstract. In this study, the connection between statistical Cesaro summability as well as
sequence of statistical convergence within neutrosophic n-normed linear space (9In91£8) is
investigated. Although Cesaro summability along with its statistical variant within classical
normed spaces, fuzzy, intuitionistic fuzzy, and neutrosophic are covered in the literature,
this study is notable for both its methodology and its thorough approach, which covers a
wider range among spaces in addition explains the process beginning with the statistical
Cesaro summability concepts towards statistical convergence. The Tauberian theorems in
IMNLS will follow from these findings.
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1. INTRODUCTION

In 1965, Zadeh[23] initially presented the theory among fuzzy sets. He developed this the-
ory to deal with the idea of partial truth, in which truth values fall somewhere between being
entirely true and being entirely untrue. This strategy was especially helpful for handling
ambiguous or imprecise data, which conventional binary logic was ill-equipped to handle.
Atanassov[2], [3] introduced intuitionistic fuzzy set(IFS) theory in 1986. This theory adds
a degree among membership as well as a degree among non-membership to the usual fuzzy
set theory. Florentin Smarandache[I8][19] introduced the concept of neutrosophic sets as to
extend of the IFS. The degree of indeterminacy and the neutrosophic set were established as
distinct components in his 1995 manuscript, which was published in 1998. Compared with
traditional fuzzy sets, this enables a representation of imprecision and uncertainty, which
makes it especially helpful in situations where judgments must take into account ambiguous
or incomplete data. Gunawan and Mashadi9], Kim and Cho[I3], Malceski[I4], and other
researchers have looked at n-normed linear spaces. Vijayabalaji and Narayanan[21] defined
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a fuzzy n-normed linear space. Saadati and Park[I7] introduced the concept of intuitionistic
fuzzy normed space. Many more authors have conducted research on generalised difference
sequence spaces. Jeyaraman et al.[I0],[11] established the concepts of Logarithmic summa-
bility and Cesaro summability in neutrosophic n- normed linear spaces. Praveena et al.[10]
generalized the concept of Cesaro summability method in Neutrosophic Normed spaces using
the Tauberian conditions.

Our aim in this research is to introduce the idea of statistical summability theory in a neu-
trosophic n- normed linear spaces 9InMLGS. In the context of NnN, this work will assist us in
establishing Tauberian conditions which enable the shift beginning with the statistical Cesaro
summability towards statistical convergence among sequences. In order to accomplish this,
we provide the ideas among Cesaro as well as statistical Cesaro summability. Future research
into related Tauberian theorems in a 9InNLS environment is made possible by these ideas.

2. PRELIMINARIES

This phase contains some of the basic definitions in addition to the notation required for
the next section.

Definition 2.1. [I0] The following azioms define a continuous t-norm as a binary operation
x:[0,1]x [0,1]— [0,1]

(i) * is continuous, commutative and associative,

(i1) px1=p forevery pe[0,1],

(iii) If p < v and q < s then pxq < vxs, for each p,q,t,s € [0,1]

Definition 2.2. [10] The seven-tuple (U, fi, 7, @, *,0,0) is recognized as a NmNLS, where
i represents the space of vectors among dimensions that vary d > n on the domain R, *
indicates a continuous t-norm, ©, and o represent a continuous t-conorms, and fi, ¥, and
@ are fuzzy sets described on U™ x (0,00). In this context, [i denotes the membership de-
gree, U denotes the non-membership degree and & indicates the degree of indeterminacy
for elements (f1,fa, ... ,fn,ﬂ) € U™ x (0,00). The following requirements are met for each
(f1sf9s- - - ) € U™ and s, A > 0:

(i) fs T s A) A D0 Fs s A) + @ (0 Fos- s A) < 35

(i) (i1, fo - - A N) =1, P(f1, 0o N) =0 and @(fy, fas - - 1§, A) = 0 for every

positive A iff f1,fy, ..., f, are linearly dependent;

(153) 1(f1, 92, - - - fs 5\), U(f1, 02, -« - s fs 5\) and O(f1,fay -+« Tn) 5\) are not influenced by any par-
ticular arrangement of f1,fa, ..., f,; A A

(1) ((f1sfos - chys A) = ﬂ(fl,b,...,fn,ﬁ), D(fy s - €y A) = ﬁ(fl,fQ,...,fn,ﬁ) and
Slf1tas s €l N) =@ (fsfr o ) € A0, € F

(0) lfysFos s fs 8) % A0 s oo Fis A) < T T oo+ frr s+ A);

(Vi) D(f1s 0 - s Fns 8) O D(F1afas v s fogs A) = D(f1s s - sy A Fs 8 + A):

(i) D(f1sfas - -1 Fns ) © D(F1sfs - - o s fs A) = D(f1sfas oo oo s S+ A);

(vii) /l(fl,fg,..;,fn,;\) 2 (0,00) = [0,1], #(f1,fas -+ s A) : (0,00) = [0,1] and
@O(f1, 0y« s fny A) 2 (0,00) — [0, 1] are always continuous in \;
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(viii) Tim i(fy,fas - fno A) = 1 and lm a(fy, fy, - .. 5, A) =0 ;

A—00 R A—0 .
(iz) im (f,f2,...,f,, A) =0 and lim o(f,fa, ..., f,, A) = 1.
A—00 R A—0 R
(iz) lim @(f1,f2,-.-,fn, A) =0 and lim O(fi,fa, . . ., 1, A) = 1.
A—00 A—=0

Definition 2.3. [22] Let (4, 1,7, @, *,0,0) be NMNLES.

(i) The ©§ = B a sequence in 3\ is considered to converge with £ € $ under MaN (1, 7, )",
if ¥ 0 € (0, 1),5\ >0, and also f1,fy, ..., f,_1 € Y, I a natural number kg in a way

((f1s s a1y B — £ A) > 1= 8, D(f, 00 -+ -5 fp1, Ok — £,A) < 6 and

(1,0 a1 B — £ 0) < 8V k> ko.

In order to indicate this convergence, (fi,v,0)" — limf) = £ or Dk (u_>) £ as k — oo.

(i) The § = Oy a sequence within U is defined to be Cauchy in relation to YN (4, v, )",
if Vo € (0, 1),5\ > 0 and also f1,fy,...,f,_1 € Y, I a natural number kg in a way that
1 T2s s a1 B — By A) > 1= 8, 9(1, fa -+ s Fu1s B — By A) < & and

B(f1fs - - s Fue1s O — By A) < & for any k,m > ko.

(11i) If all Cauchy sequences in il converge, then a MImMLS U is complete with regard to NnN
(1,5, 5)".

0.0\

Definition 2.4. Let (4, 1,7, @, *,0,0) represent a NLS as well as U indicate any subset
of M. The set U is considered bound if 3 ¢ > 0 and Ao > 0 are such that

ﬂ(f17f27"'7fn75\0) >1- éy Ij(flvf%"wfn;j‘()) < é and a)(flnya---afna}\O) < E)
for all f1,a,...,1, € U. We tell that the set U is p-bounded if lim Py(N) = 1 and

A—00

lim WUy(A) =0 and lim og(\) = 0 where
A—00 A—00

(I'Q](T) = inf{ﬂ(ﬁ,&, s 7’.n7f) : f17f27 s 7fn € m};
Uag(r) = sup{v(fi,fa, - - s fns ©) : f1s 00y -0 f, € U}
90‘17(70) = Sup{w<f17f27 s 7fnvf) : f17f27 s 7fn € SU}

1
Definition 2.5. Let U be subset of N. §(0) = li_>m E‘{k < n:k €U}, where || indicates

the cardinality of the set U and determines the natural density of U whenever the limit exists.

Definition 2.6. A sequence { = {f,,} among numbers is assumed statistically(st)- convergent
to £, whenV 3> 0, 6({k e N: |f, — £| > g}) = 0. That a case, we represent st —limf= £

Definition 2.7. ([20]). Let (4, 1,0, @, %,0,0) be MNELS. The { = {fi.} a sequence within
M is assumed st- convergent towards £ € 8 in relation with MaN (i, 0,0)", when for all
3 € (0,1),A > 0 along with hy,hy, ... hy_y € &L,

O({k € N: i(hy, ho, ..., by g, — £,0) <1— g, )

v(hy, hg,. .. ,hn_1,fk S )\) > o,0(hy,ho, .. hyo1, 0, — £,0) > 0}) = 0. This is represented
by sty s — limf=

3. STATISTICAL CESARO SUMMABILITY IN 9InNLS
We begin by introducing the concept of Cesaro summability.

Definition 3.1. ([7]). Let {a,} indicate a sequence within YNLS (L, fi, 0, D, *,0,0). The
equation X, = %szzo ar describes the arithmetic means (AM) X, among a,. {an} is
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referred to be Cesaro summable towards a € 4 when (1,7, 0)" — li_r}n X,, = a. Further, {a,}
m oo

is indicated as a st Cesaro summable towards a € L when st y zy» — lim X, = a.
v m—00

In a 9InNLS under p-boundedness of sequence, the st Cesaro summability method is

regular, as demonstrate by the following theorem.

Theorem 3.1. Let {a,} indicate a p-bounded sequence within a YNLS (LU, i, U, O, *,0,0).
If {a,} converges statistically to a € U, then {a,} serves as a st Cesaro summable to i in
relation to NN (i, v, w)".

Proof. Let {a,} st converges towards a € i and also assume that it is p-bounded. Put
fi,f2, 561 € 8h If > 0, then there is T, T’ > 0 which means

infren f(f1, for - -5 fpe158n,t) > 1 — 0, sup,en (1,25 - - fp_1,8n, t) < 0, and

sup,en @(f1, fa, - - -, fu_1, @n, t) < g, for every t > 2T.

Therefore, inf,cN i (fl,fQ, S TR %) > 1 — 0, sup,en ¥ (fl,f2, R TR %) < ¢ and

SUP, e W (fl,fQ, csfn—18, 5 ) < 0 for every t > 2T".

Thus, the following inequalities are implied:

infpen a(fy, fa, -« -5 o1, an — &, t)

> min {infneNﬂ (flva» oesfn1s an, %) ;infpen fi (ﬁan, S ST %)} >1-9,
sup,en (f1,f2, - - -y fp1,8n — &, t)

< max{supneND (fl,fQ, ooy fne1, an, %) ,SUDP,en U (ﬁ,fQ, S T R %)} <0
and

sup,en @(f1, fo, - -+, fp_1,8n — 2, )

< max{supneNcD <f17f27 o1, an, %) , SUPp ey W <f17f27 NP S 2)} <0

V T > min{2T, 2T’}. Since a,, which is st- convergent towards i, we get that
SN (8,8)) = S(No(5,8)) = S(Na(8,8)) = 0 for any ¢ > 0,

where

Nu(0,t) ={n e N: a(fy,fa, ..., f_1,8n —a,t) <1 — 0},

Ny(0,t) ={n e N:v(f1,f2,- .-, fn1,2n —a,¥) > 0} and

Ny (0,t) ={n e N:@(f,fo, - fp_1,8n —a,t) > o}
Describe the sets
D={keN:keNy,t)},9"={keN:ke NC( ,©)}, and

¢={keN:keNyt)},& ={keN:ke NSp,t)}, and

F={keN:keNy(0,t)},§F ={keN:ke N:(g,0)}

which means [D|+ €|+ |§| =n+1 = |D'|+|€¢| +|F|, in which |- | indicates the cardinality
among a set.

Therefore, DNENF = ¢ = D' NE NF, we can determine. We determine that there is a

number ng € N which corresponds with the information above,

ﬂ(f17f27 LI 7fn—17‘Xu‘n - aﬂ%)

R .
:ﬂ(f17f2""7fn_17 +12(ak_a)7t>
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1& flva)"wfn—la Z(ak_a)+ Z(ak—a),(n—i—l)f

keEN, keNg

Zmin 14 f17f27"'7’.n71) Z(ak_a‘)v‘@h\t 7,a fl)qu"'?fnfh Z(ak—&)7|®/|f

keNy keNg
> mi in /i —a),t in /i —a),t
_mln{grel%\%u(ﬁv&) 7fn—17(ak a’)7 )7%2%\%”(1'17’.27 7'.77,717(3‘]6 a’)7 )}
> mi inf /i U —a),t), min & (f1,f5, .-+, f—1, —a),t
—mln{klenNﬂu(flvf% -1, (a — ), 1) ,frelﬁ%“(fl f2 fn—1, (a, — @) )}
> min{l - 4,1 - 5}
=1-3
and also
ﬁ(f17f27---7fn—17‘ku'n_a7%)
< 7 —a),t % —a),t
> max {?é%}sy(fla ’.27 7fn717 (ak &), t)? llclé%)g V(f17f27 7fn717 (a'k a)a t)}

< max { sup v(f1,fa, - -y fp_1, (A — &), ), max (f, o, . . ., fp_1, (2 — a),f)}

keN, keNg

<o
and
(D(flaf% e 7fn71a/?n - avf)

< max {maxw(’.laf% ce afn—l? (ak - a’)?f)’ maX(D(flafZ’ s 7fn—17 (ak’ - a),f)}
keNg keNg

< max { sSup aj(fhf% cee 7fn717 (ak - 3)7%)7 maXd}(fhfZa s 7fn717 (a’k - a‘)?f)}
keNg keNg

<0
for each t > min{2T, 2T"} > 0 along with n > ng. It implies that the set is as follows:
05:{ nGN:,av(fl,fQ,...,fn,l,é\u,’n—a,E)gl—uéor
U(f1s 25 - s fne1s Xn — %) > 0,0(f1, 025+ -+ 5 fpm1, An — 2, ) > 0
containing, at most, a finite number of terms. The sequence a, is st-Cesaro summable
towards { in relation to MM ([, 7, ©)™ since a finite subset among natural numbers contains
zero density, as observed by the observation that & (8) =0. O

We demonstrate in the following example that the converse among Theorem (3.1)) does
not necessarily have to be true.
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1+ (=142, ift = m?
Example 3.1. Let by =< 1+ (—=1)*—(¢—-1)2, ife=m?+1 , formeN.,
1+ (=1) otherwise,

be in MNLS (LU, 1, 7, 0, x,0,0). At (U, 1, 7, @, *,0,0), the sequence (bg) is neither convergent
nor st-convergent. Furthermore, it is also not Cesaro summable.
To reach a limit, let’s use st-Cesaro summability. Cesaro means (ag) of sequence (bg) is
%:{1+§2;g4y+a@ﬁ_m2

1+ % 25‘:1(—i)]a otherwise.
Sequence (ag) is st-convergent to 1 since for each t > 0, we have

st(p,poyr —lim fi(ag—1,t) = 1,5t 5 o) —lim D(ag—1,%) = 0 and st(; p o)n —limG(ag—1,t) =0

where R
' —_ t=m?
) 3 .
—————, otherwise
t g o (1))
|3 251 (=) _ 9
~ l E Y ) -
Plae—1,8) = ¢ T
ey G lv otherwise
Gk Z§:1(—?)J\’
B ZE:{(%)J%I b= m2
w(ag —1,t) = S r(_i)j‘ ’
t=Im—— otherwise

Hence, sequence (bg) is st-Cesaro summable to 1 in (L, 1,7, @, *,©,0)

4. RELATED STUDIES LEAD TO THE TAUBERIAN THEOREMS

The following lemma establishes homogeneity and additivity among the limit of statistical
within a 9InINLS.

Lemma 4.1. Let (i, fi, 7,0, %*,0,0) be a MNLS and u = {uy},v = {vi} be sequences in 1.
After that, the given are true:

(i) When the limit of (ji, 7, ®)"-statistical among u indicate &, together with the (fi, v, &)"-
st-limit among v is p, after that the limit of (fi,v,w)"-statistical among the sum (u + v)
represent 5—1— p-

(ii) When the limit of (f1,v,©)"-statistical among u is ¢, along with o represent any real

number, after that the limit of (fi,v,®)"-statistical among au is ag.

Theorem 4.1. Let (8, fi, 7, @, *,0,0) be a MNLS along with {a,} denote a sequence within
. When {a,} is a st-Cesaro summable towards a in relation to NN (i, v,0)", after that
X,
which v, = [pn].

which is st-convergent towards a for every vy > 0, That is sty y ) — lim 2?% =a, in

n
n—o0

Proof. Consider st(; j 5yn — li_>m X, = a. After that, for a sufficiently large N, follwed § > 0
n—oo
together with put f1,fs,...,f,_1 € 4, the given sets are described:

ko (0,8) = {k <ot i ooy, A —a,8) < 1 -5},

ki #(0,8) = {k <on (i, Tor - far, Xk — a,8) > 8},
&1, 02,1y X —a,8) > 0},

8,%) = {k <o ¢ filfy fos - o1y Xy, —a,8) <1 -5},
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Ky /\30(57 ‘E) = {k; <YN: ﬁ(fbea NN T X‘Jk -, f) > é}v
K@,/\V/U(é’ E) = {k < DN (Ij(flaf% ce ’fnflv X\jk —a, e) > é}
We then examine the cases given here.
Case 1: y > 1.
The case is easy to observe that f@ﬂ’/fn(é, t) C ﬁﬂ/{,(é,f), Ky #9(0,8) € Ky 3(0,%) and also
5.49(0:%) € Ky 3(0,7) for every T > 0. It suggests that which follows:

50 0l g, (O] 0l (60 e 2(0:)

N+1 — Ay+y — ov+1l = ygy+l
|k, 2900, V) = vlr, ¥0(0, D) vlk, ¥0(0,0)] ik, $(0,7)]
< : < and
N+1 yN + b pn +1 yn + 1
1%,29(2, O] = vk w90 D) _ vlkg 29(@ 0 _ vlsg v (00|
N+1 ov+p T gyv+1 T v +1

By applying the mentioned inequalities, accordingly, we can establish that
0 1, (8,8)) < 00y 3(8,8)), (k3 (8,8) < 00(ry, £(6,0)), and (ki 4, (6,7)) < 9o(ry £(8,))-

n )

Therefore, for each t > 0, we obtain 5( ﬂ’)?n(g,t)) = 5( (Q, t)) = 5(%,/&,(57%)) =0.
Consequently, we may show that st(; s 5yn — nh_)rgo Xy,

Case 2: y € (0,1).

To conclude our case, we now demonstrate that the expression /'lv,’n, in the sequence /'\v,’nn, never
occurs beyond 1 + % times.

Assume that for few p,q € N, we get n =19, = 0p11 = ... = Dpig—1 < Dptqs

or similarly,

n<pp<plp+1)<..<ylptg-1)<n+1<yp+aq).

Thus, we've been given n+9(¢g—1) <yp+9(g—1)=n(p+q¢—1) <n+1,

which gives n(g—1) < 1,ie,q¢ <1+ % According to this field, we get for any ¢ > 0 and
also t > 0 that

ks, %, (0% )\ 1 |k, 2 (8¢ ¢ (8,0
Xy T 1Y) x5, 2 (0] 155, (8:0)]
NrT S (1 + n) N+1 t)N-i-l <2+ )= and
Ik 9(8,0)] 1\ yy+1 15y 2 (8,0 Iy 2 (8,0)]
N7+1<<1+*) N+IT§ 20+ 1) =T also
|I'i‘:; Xn(évf)l 1 UN+1 |’{w X 9) |F’3L:, )é‘(évf”
N+1 < <1+ ’) N+1 yy+1 S ( ) yn+1
(nt1)

for which N is large enough, such that ""“) < 2y.

Consequently, it follows that

0 1, (8,8) < 209 + 1)3(r, 4(8,)

0(ry, 1, (0:8)) < 2(n + 1)d(r,, 4(0,7)) and

5(/4037%(5,%)) < 2(y :{— 1)6 (H‘D’/\;(é,f)) correspondingly.

Considering that {X,} is st-convergent toward 4,

30, 4(8:8)) = 8k, 4(8,8)) = (1, (6.8)) = 0 for any & > 0.

Therefore, Vt > 0, (5(/%’%(@,%)) = 0(ky 49(0,7)) = (5(/<;~ #9(0,1)) =0.

We have therefore also demonstrated that st(; ; zy» — lim XU = a in this instance. O

n—oo

Theorem 4.2. Let (U, i, 7,0, *,0,0) indicate a MNLS and let {a,} be a sequence within
s If {an} represents a st-Cesaro summable toward a in relation to MmN (4, v, 0)". After



124 P. JENIFER, M. JEYARAMAN, AND S. JAFARI

Dn
1
that, st(p 5oy — nh_)rgo - Z ar = a, for any vy > 1 along with
k=n+1
1 o
5W@ang&n_%k§:apZ&ﬁTWO<U<L
=Yn+1

Proof. Consider sty z» — lim X, = a. Select 11,150 > 0 with a given ¢ > 0 so that

n—oo

max{ty, to} < ¢ and min{1—¢1,1—12} > 1— g. Next, define the following sets for each t > 0
and a sufficiently large N:

Ko p(:8) = {k <Ny oo fpets Xk —a,8) <1 — 0,
’%,;\?(lef) ={k<N:0(f1,f, .- 7fn—17‘)z‘k —a,t) >},
”@,;é(blaf) ={k <N :0(f,f2, - 0 la/Yk; —a,t) > 1},
R (02:8) = (B S Ny oo fays e — A ) < 182,
”‘p,/\?,fn(%f) = {k <N :0(f,f0s- s fnets Xy — X, B) > B2,
o (12,8) = {k < N Oy, fos - 51, Xy — Xy 1) > T2}

We now explain the cases listed here.
Case I: 1y > 1. Define the following sets for any t > 0 and given g > 0:

Hu,ﬁ(éaf) = {k S N : ﬂ(fl’f27 s 7fn—173n(w) - avf) S 1- é}:

173( 7€) = {k < N : lj(flaf%"')fn—la:jn(w) - a‘af) > é})
’Q@J(évf) = {k <N: “D(flvf% o afn—l)Gn(w) —a, f‘) > é},

. L1~ 1
in which Jn(w) = 5= .

For each y > 1 and also sufficiently large n € N\{0} so that n < y,, along with n >

ay, for each n € N.
3p—1
n(p—1)°

we get that for every t > 0 along with {},fy,...,f,_1 € 4,

i 1 .
,u’(f17’.27"'7fn17t)n_n Z a’k_a7t)

k=n+1
X Do + 1 - .
= 19, - n—1, - ag —a,t
M(ﬁfz frt1 _n%HZk _nkzzok
. +1 ¢ +1—-—9,+ny N
:,L<ﬁ4¢.”,@hn” x,, — O ‘&1—ax>
Dn — N Dn — 1
. v v t . . t
Z nqp f17f27"'7fn—1athn_Xna2|)T s W flana'-wfn—laXn_a?i
Un—"n
) L (- DR Lt
Z nqp f17f27"'7fn—1aXt]n_Xna 40 s U fl?va"'7fn—1aXn_a7§

= min {ﬂ(flaf% cee ’fn—lv‘/’ﬁ)n - /-%n,f‘o),/fb <flaf2v cee ’fn—la/f‘n -, 2>}
> min{l — 9,1 — 11}

>1-8
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and
Ij(flvaa“'?fn—la Z aE — a, t)
k: n+1
s D+ 1 a )
_I/<f1>f25-..7fn—170 _nUn“‘lZ k Un_nzak a,t
o Un+1" Un+1*0n+nv A
= X,y — X, —
V<f17’.27 71.77,717‘)”_” Yn Y)n—n n a,t
. U U
S max{u <f1)f23--~7fnlaxnn Xna2\)n+1> s <flaf27"')fnla‘)(na7 2>}
Un—"n
. L (- 1f) .t
§Inax{l/ <fl7f27"'7fn—17‘)(0n _Xn7<‘)40)> vV <f1af27"'>fn—17‘)(n_a7 2>}
. 9 o\ L 9 t
:maX{V (f17f27"')fn717X\)n _Xn7t0) , V (flufZW")fnth_a‘a 2>}
< max{tg,t1}
<0,
and

(*D(flvf%"'vfn—l? Z ag — a, t)

k n+1

N D, + 1 - R
:w<f1af2a--'>fn—lan _nnn+1z k_nn_nzak_avt>

- +1 +1—-9,+n 4 N
= W <’.1,f2,.. . 7’.77,717 UTL X‘)n — Un Un Xn — a, t)
O — 7N On — N

. v v t ) v t
S max{u <f17f27--' 7fnflathn - Xna 2\),H_1> s <flaf27"')fnla‘)(n —a, 2>}
Un—n
£
2

i Lo (h—1F\ y
gmax{w <f17f27"'7fn—17‘)(l)n_xn>(040))aw<f17f27"'7fn lv‘X —a,

~ v 5o\ o v T
= max {W <f17f27 L 7fn71)Xl)n - XthU) yV (’.17f27 ... 7fn71)Xn — a, 2)}

< max{tg,t1}

<0,

where ty = % > 0. Therefore, we get for all t > 0,

ﬁ;‘;\?(éh E) U H;/f )é)(LQ, t) - HM"](:Q7 t)v

K,;,A;(Ll,t) U /12/? un(LQ,t) C kg 5(0,7),

’{(c:) X(let) U Klgv)?, V\J (LQat) - "QE,(}(Qat)
or equivalently,
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k3(0,%) C kg p 3, (12,8) N kg 30, B). (4.1)

For any r > 0 for which we take the asymptotic densities of both sides of (4.1)), we get

%, (12,9)

Since {X,} is st-convergent towards a € I,
5(/4}17)2(“,%)) = 5(@)((“, ) = (5( #(11,%)) = 0 for every © > 0. Therefore, {X,,} also

st-converges towards 41.

Using the argument above, st(; jz)» — lim ()?Un — X,) = 0 is implied. Therefore, we get
n—0o0

d(k Ky % % (12,%)) = (5(I€DXXU(LQ,E) o(k QQFXU(LQ,E)) =0vVt>0

Now, we can determine that 6(x MJ([), t)) = 0(kp3(0,t)) = (ke 3(0,t) =0

\3

1

Z ar = a, for each y > 1.
kn+1

Therefore, sty zm — le 0
n—oo n

Case IT: n € (0,1).

The following sets should be described for any t > 0 and given ¢ > O:
k4,3(0:8) = {k < Nt i, M2, - - oo fom1s Ju(w) —a,t) <1 -0},
kp,3(0,8) = {k < N :0(f1,fa, - o1, Je(w) — a,®) > 0},
Ko,3(0,%) = {k < N :@(f1,fp, - .o o1, Ju(w) — a,t) > 0},

in which Jx(w) = — n S " yn+1ak for any n € N.

For all sufficiently large n € N\{0} together with 0 <y < 1 in a way that n > v,, along with
n > % we get that V& > 0 along with f;,f,...,f, ; € &I, that

Z ak—at

" g= Ynt1

I y y t . . t
Z min {/,L <f17f27 ... 7fn—17Xl)n - Xn7 2\)”+1> s <’.17f27 LI 7fn717XTL — a, 2>}
n—Yn

> min{l — 2,1 — 11}

1% flvaa"wfn—l’

>1-4
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and
v flﬂ’.27" fn 1 Z ak_at
_Unk
Dn+1
. L) Lk
S max{l/ <f17f27---7fn—17Xl)n - Xn72\)n+1> sV (fl?va"'afn—laXn — a, 2)}
n—hn
. 9 o . 9 T
S max{l/ (fl7’.27 L) 7fn—17XUn - Xnut:[) , V <fl7f27 L) 7fn717Xn - a) 2)}
< max{tg,t1}
<9,
and
w ﬁ»féa" fn 15 j{: ap — a, t

n=On k=vnt1

- 9 t . o t
S max {w (fl;fQ:-” 7fn—17XUn - Xnv 21)n+1> , W <f17f27" . 7fn—17Xn — a, 2>}
n—"Yn

. v o\ - v t
S max {w (flvb) oo 7fn—17Xl)n - Xnytl) , W <f1)f27 L) 7fn717XTL - a7 >}
< max{to,t1}
<0

where t] = (1 n) > 0. Therefore, for all ¢ > 0, we obtain

3(0,8) € kg p 3 (12,8) Ui (01, 8). (4.2)

X
[, we obtain {.Xv}, } is also st-convergent towards a.

v

Accordlng to the proof provided, st(; y gy — h_}m (XU —X,) =0.
n—oo
Therefore, we get 5(@;’3(@,17)) (K 3(0,1)) = (5(/@,3(@, t)) =
1 n
We can so demonstrate that st(; ; z)n — li_>m ) g ar = a, for each y € (0,1). O
"y n—oo N — n
Dn+1

5. CONCLUSION

In this stydy, we extended classical Tauberian theorems to the framework of neutrosophic

n-normed linear spaces by employing the concept of statistical Cesaro summability. This
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integration offers a novel perspective for analyzing convergence behaviors within uncertain

and imprecise environments, which are effectively modeled using neutrosophic structures.

The established results not only generalize known theorems in normed linear spaces but also

provide a robust mathematical foundation for further applications in areas such as functional

analysis, information theory and decision-making under uncertainty. Future research can ex-

plore analogous results using other summability methods and extend the framework to more

generalized neutrosophic spaces, enriching the theoretical development of both summability

theory and neutrosophic analysis.
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