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Abstract. The current study investigates the concept of pointwise hemi-slant conformal
submersions from almost contact metric manifolds to Riemannian manifold. We investigate
the geometrical implications of the horizontal and vertical vector fields £ while studying the
distribution integrability and total geodesicness of distribution leaves. Finally, we explore
¢-pluriharmonicity from the almost contact metric manifold.
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1. INTRODUCTION

Immersions and submersions are well known to be special tools in both differential and Rie-
mannian geometry. It is important in Riemannian geometry, particularly when the involved
manifolds have a differentiable structures. Four decades ago, B. O’Neill [22] and A. Gray
[12] separately formulated the cornerstone of the theory of Riemannian submersions, which
has experienced major advances over the past two decades. In mathematics and physics,
Riemannian submersions have been widely used, particularly in theories like Yang-Mills and
Kaluza-Klein (see [8], [35], [20], [17]).

Riemannian submersions from almost Hermitian manifolds to Riemannian manifolds were
studied in 1976 by B. Watson [34]. On the foundation of the findings from this study, B. Sahin
[26] assessed the geometry and distinctive features of anti-invariant Riemannian submersions
onto Riemannian manifolds. Afterwards, authors explored this field further, looking at slant
submersions [10], [28], semi-slant submersions [16], [23], anti-invariant submersions [3], [26]
and semi-invariant submersions [27] among other topics. Tastan, Sahin, and Yanan [33]
defined and studied hemi-slant submersions from almost Hermitian manifolds as a generalized
case of semi-invariant and semi-slant submersions.

J. W. Lee and B. Sahin [19] introduced pointwise slant submersions from almost Hermitian
manifolds to Riemannian manifolds in this addition, thus expanding the concept of slant sub-

mersions even further. They established characterizations for pointwise slant submersions in
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addition to offering examples of this kind of submersion. As a generalization of Riemannian
submersions, B. Fuglede [I3] and T. Ishihara [I8] presented the idea of conformal submersion
and talked about some of its geometric characteristics. As a generalization of holomorphic
submersions, conformal holomorphic submersions were studied by Gudmundsson and Wood
[15]. They determined the necessary and sufficient conditions for harmonic morphisms of
conformal holomorphic submersions. Later, conformal semi-invariant submersions [4], con-
formal slant submersions [2], conformal anti-invariant submersions [29], [24] and conformal
semi-slant submersions [I] were studied and defined by Akyol and Sahin. Conformal hemi-
slant submersions [31], [32], conformal bi-slant submersions [5] and quasi bi-slant conformal
submersions [6] have all been discussed in the context of geometric studies recently, along
with an assortment of decomposition theorems. Moreover, from almost Hermitian manifolds
to almost contact metric manifolds, the concept of pluriharmonicity was extended.

We study the geometry of pointwise hemi-slant conformal submersions by considering both
the horizontal and vertical aspects of the structural vector field £&. The paper is organized
as follows: Our investigation’s goals can be achieved by introducing almost contact mani-
folds, such as the Sasakian manifold, which we discuss in Section 2. In the third part of
this investigation, we define pointwise hemi-slant conformal submersions and describe some
interesting results by considering the horizontal structure of the Reeb vector field €. A thor-
ough examination of the total geodesic and the integrability of distributions is also given in
Section 3. While in section 4, we consider vertical aspect of Reeb vector field £ and study of
pointwise hemi-slant conformal submersions. Additionally, as the nature of the Reeb vector
field differs in Sections 3 and 4, we compared the findings of these two sections.

Note: We use the following abbreviations in this article.
Pointwise hemi-slant conformal submersion- PWHSCS
Riemannian submersion- RS

Riemannian Manifold-RM

Horizontally Conformal Submersion-HCS

Sasakian manifold-SM

Almost contact metric manifold-ACMM

2. PRELIMINARIES

Authors find the study of RSs to be an extremely intriguing topic. We now begin with
a discussion of a few significant points and some useful results that are highly beneficial to

our research.

Definition 2.1. [34] Let (Z;1,91) and (Eg,g2) be two RMs and & be a smooth map between
(E1,91) and (Zz, g2) where, m1 and mqy are the dimensions of 21 and Zy respectively. Then
@ s called horizontally weakly conformal or semi conformal at x € 1 if either

(1) @ue =0, or

(i1) @wy maps horizontal space R, = (ker(duz))t conformally onto Tas(Z2) i.e., Gy is

surjective and there exits a number A(z) # 0 such that

92( Qe B15 WszB2) = A(x)g(B1, B2),
for any 1, B2 € N,.
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Above equation can be reduce as:
(Qxg2)e |nyxn, = Ax)g(7) |n, xx, -

A point z is a critical point of & if it fulfills (¢) in the definition above. A point that
satisfies (ii) is known as a regular point. At a critical point, au, has rank 0, whereas at a
regular point, it has rank n and defines a submersion. The number \(x) is called the square
dilation and its square root A(x) = \/IW is called the dilation of & at  which is necessarily
non-negative. A map & is considered horizontally weakly conformal or semi-conformal on =
if it is weakly conformal at all points of =;. If & has no critical points, it is considered a

(horizontally) conformal submersion.

Definition 2.2. [7] Let & be a RS between two RMs. Then & is called a horizontally
conformal submersion, if there is a positive function \ such that

. 1 _ _
g1(w1,Wa) = ﬁQZ(Oé*leOé*WQ)a (2.1)

)t. It is obvious that every RSs is particularly a horizontally

for any wi,we € I'(kera

conformal submersion with A = 1.

Let be a RS a : (E1,91) — (E2,92). If p1 € F(ker@*){ then a vector field 51 on Z; is
referred to as a basic vector field and a-related to Zo using a vector field 51 i.e a.(B1(q)) =

Bra(q) for g € 1.
According to O’Neill, the two equations of the (1,2) tensor fields 7 and A are:

Ap, F1 = XVyp, vF; + vV, NF;, (2.2)

TElFl = NV,g, vF; + vV g, NFy, (2.3)

for any Eq, Fy € I'(TZ;) and V is a Levi-Civita connection of g;. From above two equations
of O’Neill, we can deduce that

Viwz = Toywa + vV, we
Vi, B1 = To, B1 + RV, B1
Vﬁlwl = Aglwl + vy V,BJWI

Vg P2 =RV, f2 + Ap, 5
for any vector fields wy,ws € I'(keray) and By, Bo € T'(kera,)* [T1].

We note that
g(AﬁlEhFl) = _g(E17A51F1)7 g(%gElvFl) - _g(E177;12F1)7

for any vector fields E1, Fy € I'(T'Z1). In the unique scenario where & represents a HCS, we

possess:

Proposition 2.1. [14] Let a : (E1,91) — (E2,92) be a horizontally conformal submersion
with dilation A and (1, B be the horizontal vectors, then
1 1
Ap, P2 = 5{v[B1, Be] ~ )\29(51,52)97"@(1@()\7)} (2.8)

measures the obstruction integrability of the horizontal distribution.
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The second fundamental form of smooth map & is provided by the formula
(Vo) (w1, wz) = V& ws — @ Ve, wa, (2.9)
and the map be totally geodesic if (Va,)(wi,ws) = 0 for all wy,we € T'(T'E1) where V and
V@ are Levi-Civita and pullback connections.

Lemma 2.1. Let & : 2y — Z5 be a HCS. Then, we have
(1) (Vaw)(B1,B2) = Bri(InA)aw(B2) + B2(InN)as(B1) — 91(B1, P2)ax(grad In)),
(il) (Vow)(wr,wa) = = (T, w2),
(i) (V@) (B1,w1) = —a.(Vaywn) =~ (Ag,w1)
for any B, Ba € T'(keray): and wy,ws € T'(kera,) [34].

Let M be a (2n + 1)-dimensional almost contact manifold with almost contact structures
(¢,&,m), where a (1,1) tensor field ¢, a vector field £ and a 1-form 7 satisfying

¢*=—I+n®E ¢ =0, n0p =0, n(¢) =1, (2.10)
where [ is the identity tensor and there exists a Riemannian metric g in such a way that
g(pw1, pwz) = g(wi,ws2) — n(wi)n(ws), (2.11)

which can be noticed as follows:
n(w1) = g(wi,§), (2.12)

for any wy, we € T'(TM). Then (¢,&,n, g)-structure is called an almost contact metric struc-
ture. A normal contact metric structure is called a Sasakian structure, which satisfies

(Vi )wa = g(wi, wa)€ — n(wa)wi (2.13)
where V is the Levi-Civita connection of g. For a SM, we can deduce that
Vi & = —odwr. (2.14)

The covariant derivative of ¢ is defined by

(Vﬁ1¢)ﬁ2 = vﬂlgbﬂ? - ¢V51527 (2'15)
for all vector fields (1,02 in M. S. A. Sepet and M. Ergut [30] defined pointwise slant

submersion as:

Definition 2.3. Let (Z1,¢,&,1,91) be an ACMM and (Z1,¢,€,1,91) be a RM.Let & be a
RS from =1 to Za. If the wirtinger angle (1) between ¢B1 and the space kera, is inde-
pendent of the choice of the non-zero vector field 51 € T'(keraw)— < & > at each given point
q € 21, then & is a pointwise slant submersion. The angle 0 represents a function on Zp,

known as the slant function of the pointwise slant submersion.

Now, we extended the concept of ¢-pluriharmonicity from almost contact metric manifolds
to (21, ¢,&,m, g1) which was once studied and defined by Y. Ohnita [2I]. Let & be a PWHSCS
from almost contact metric manifolds to (Z1, ¢, &, 7, g1) onto a Riemannian manifold (23, g2).
Then PWHSCS is D -¢-pluriharmonic, ©-¢-pluriharmonic, (D — D%)-¢ pluriharmonic,

kerd,-¢-pluriharmonic, (kera.)*-¢-pluriharmonic and ((kerds )+ — kera,)-¢-pluriharmonic if

(Va.)(B1, B2) + (Vau ) (¢61, ¢62) = 0, (2.16)
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for any 31, B2 € T'(D1), for any B, B2 € (DY), for any 31 € T(D1), Br € (DY), for any
B, Ba € T'(kerdw,), for any By, B2 € T'(kera, )" and for any £ € T'(keray)™*, B2 € T'(kerday).

3. POINTWISE HEMI-SLANT £1-CONFORMAL SUBMERSIONS

In this section, we will revisit the idea of PWHSCS with & € T'(kera)*.

Definition 3.1. Let a : (21,0,&,1m,91) — (E2,92) be a HCS where (Z1,¢,&,m,91) is an
ACMM and (Z3,92) is a RM. A HCS & is called a pointwise hemi-slant conformal
submersion with ¢ € T(kera.)® if there erists two distributions ®+ and D9 such that
kera, = D @ D+, ¢(D+) C T'(kera.) and for any given point ¢ € =1 and B € (DY),
the angle 0 = 6(31) between ¢B1 and space (Qe)q is independent of choice of non-zero vector
b1 € (”}30)(1, where DY is the orthogonal complement of ®+ in kera,. In this case, the angle

0 can be regarded as a slant function and called pointwise hemi-slant function of submersion.

Let & be a PWHSCS from an ACMM (Z1, ¢,&,n, g1) onto a RM (Eg, g2). Then, for any
wg € I'(kera,), we have

wo = Pwa + Quwo (3.17)
where 8 and Q are the projections morphism onto D+ and ©?. Now, for any ws € I'(kera),
we have

Pwy = dwa + Fwsy (3.18)
where 0wy € T'(kera,) and F wy € T'(kera,)®. From (3.17) and (3.18), we have

PG =¢(P¢1) + ¢(Q¢)
=6(PG1) + F (PBG) +6(QG) + 7 (2¢),

for any ¢; € I'(ker @). Since ¢D+ C T'(ker &)L, we have §(B¢1) = 0, we have

@C1 = F (P&1) +6(Q¢) + 7 (Q¢).

Now, we have the following decomposition
(kera, )t = Fo’ @ Fot o, (3.19)

where v is the orthogonal complement to F % @ F D+ in (kera. )’ such that v is invariant

with respect to ¢. Now, for any 31 € I'(kera, )", we have
Pp1 = TP+ Npi (3.20)
where J3; € I'(kera,) and N'B3; € T'(kera )™ .

Lemma 3.1. Let (21,¢,£,1,91) be an ACMM and (Eg,92) be a RM. Ifa:Z — =3 is a
PWHSCS, then we have

—wy = 82w+ JFwi, Fow +NFwi =0, —p1=FTB1+N?B1, n(Br1)€ =T+ TNPB,

for any vector field wy € T'(keraw) and By € T'(keraw)*.

Proof. By considering the (3.18) and (3.20]), the proof of Lemma exists. O

Let us now provide some helpful outcomes, which will be applied throughout the research

paper.
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Lemma 3.2. Let & be a PWHSCS from an ACMM (Z1,¢,&,m,91) onto a RM (22, g2),
then we have

62Co = (— cos®0)(a, (3.21)
for any vector fields ¢ € T'(DY).

Lemma 3.3. Let & be a PWHSCS from an ACMM (Z1,¢,&,m,91) onto a RM (22, g2),

then we have

(i) 91(8¢1,0Ca) = cos® 8 g1(Cr, Ca),
(it) g1(F ¢, F¢2) = sin® 0g1(¢1, C2),
for any vector fields (1, ¢y € T(D?).

Proof. The proof of the preceding Lemmas is identical to the proof of Theorem (2.2) of [9].

As a result, we omit the proofs. O

Lemma 3.4. Let a : 1 — Ey be a PWHSCS with hemi-slant function 0 where, (1, ¢,£,1,91)
a SM and (Z2,92) a RM, then we have

(1) A, NBa+ vV, TBs = TRV, B2 + 6As, B2
(ii) RV NP + Ag, T P2 = NRVg, B2 + F Ag, 2 + 91(B1, 2)& — n(B2) 51
(iil) vVg, 0wz + Ag, Fws = JAg,we + 6vV g, ws
(iv) Aﬁlgaa +RXVg Fwy = NAgle + FoVg,wa
(v) vV, IB1 + TouNB1 = 670,81 + TRV, B1 +1(B1)we
(Vi) T T B1 + RV ,NBL = F 10,81 + NRV, 51
(vii) vV, 0ws + T, Fws = 60V, wo + T To,we
(viil) T, 0ws + RV, Fwe = NTo,wa + F oV, we — g1 (wi,ws)E,

for any vector fields wi,ws € T'(keray) and By, Ba € T'(keray)™ .

Proof. Using (2.13)), (2.15)), and (2.7)) (3.20), we obtain the first two relations (i) and (i7).
Equations (2.13)), (2.15)) (2.7), (2.4)-(2.7), and (3.18)) (3.20|yield the expected results. O

To investigate the geometry of PWHSCS & : E1 — Z9, we will now review several key
findings. Direct calculations might lead to the following conclusions:
(a) (Vy,0)wz = vV, 0ws — 0V, we
(0) (Vur Flwz =RV, Fwy = FuVe,wy
(c) (Vg,TJ)B2 =vVg,TBs — TRV, (2
(d) (Vg N)B2 =RV3 N By — NNV, f,

for any vector fields wy,ws € I'(ker &) and B, B2 € T'(ker @, )*.

Lemma 3.5. Let a: =) — Z5 be a PWHSCS with hemi-slant function 6 from a SM onto
a RM, then we have
(i) (Vuy)ws = T Taywa — Too F woa
(i) (VarF)wz = NToywe — Toydwz + g1(wr, w2)€
(iil) (Vg,J)B2 = 0Ap, B2 — Ag, N Ba
(iv) (Vg N)B2 = F Ag, B2 — Ap, T B2 — n(B2)B1 + 91(B1, B2)¢,
for all vector fields wy,ws € T'(keraw) and B, B2 € T'(keraw)* .
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Proof. The results may be obtained by using the above-mentioned formulae (a) — (d), as well
as (215), @4)-ED. 0

The tensor fields 6 and F, if they are parallel with regard to the Levi-Civita connection
V of 1, then we obtain

T Tonwa = Tan Fwa, N'Towa — g1(wi,w2)§ = Toy, Swo

for any vector fields wy,ws € T'(TZ1).
We are going to discuss about the anti-invariant distribution ®+ and the slant distribution
DY as well as their integrability and total geodesic.

Theorem 3.1. Let & be a PWHSCS from a SM (E1,¢,€,1,91) onto a RM (Zg,g2) such
that the structure vector field £ is horizontal. Then the following are equivalent

(i) The anti-invariant distribution =+ is integrable.

(i) $n(VEa(FQ) - VEa(FGha(Fe)

=9(Ve FOC + Ve, F oG, wi) — g(Te F G+ Tey F (1, dwr)
for any ¢1,¢ € T(DY) and wy € Y.
Proof. By using (2.11)), (2.13)),(3.18]), (2.4) and (2.5)), we can write
91(Ve G, 1) = —g1(¢V ¢ 0C2, 1) + 91(TE, F o, 0w1) + g1(RV ¢, F Ga, Fwn),

for any (1,(s € T(D)* and wy € I'(D)?. Taking account the fact from (3.17), (2.13), (2.5),
and (3.18)), we have

gl(vCl@vwl) = _gl(vQSQ@vwl) - QI(VQFSCQ;UH) +91(7Z‘1FC2,&01) +91(NVC1F<2, le).

By using the horizontal conformality of & and changing the role of (j, (2 and from (2.9) with

Lemma Lemma [3.2] we finally get

sin® 091 ([C1, GaJ, w1) =01 (T F G2y 0w1) + g1(To F G, 0wr) = 1(Ve FoCo,w1) — g1(VF 81, wi)
1

+ %92(V?2(FC1)7 o (Fwr)) — p@(v?l(/f@), a(Fwr)).

This completes the proof. Il
Theorem 3.2. Let a: =1 — Zo be a PWHSCS from a SM =1 onto a RM Zy such that
structure vector field & is horizontal. Then the following are equivalent.

(i) Slant distribution ®° is integrable.

(i) 3292(VE ax(Fuwr), @x(Fwa)) + 3292(VE,a(Fuwi), @(6¢1)) + g1 ([wr, il wa)

= sin20g; (w1, wa) — cos?0g1 (Ve wi, w2) — g1(Te, Fwi, dws) — g1 (Tw, Fwi, ¢C1),
for any wi,ws € T(DY) and ¢; € T(D1).
Proof. For any wi,ws € I'(D)? and ¢; € I'(D)* with taking account the fact from (2.11),
(2.13) and (2.15), we get
91([wr, w2, 1) = —g1([w1, G1],w2) — 91(V¢, dwr, dwa) — g1 (Vi pwi, C1).

By using , and , we can write
g1([wr,wa], ¢1) = — g1([w1, 1], wa) + 91(Ve, 82wr, wa) — g1 (T¢, F wi, dw2)
- gl(NVC1FW1, FWQ) - 91(7:12&017 d)Cl) - gl(vaQlea QZ)Cl)
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In the light of (2.1) with Lemma we get
g1([wr,wa], G1) = — g1 (w1, (1], wa) + sin20¢1 (0) g1 (w1, wa) — cos?0g1 (Ve wi, wa)

3RV ), () — 3302(0. (R 1), 0(61))
— 91(Tey0w1, ¢C1) — g1(T¢, F wi, dws).
By using the horizontal conformality of & with Lemma and (2.5), we finally have
g1(lwi, wa], 1) = — g1 ([wr, G1], w2) + sin?0¢1 (0) g1 (wr, wa) — cos®0g1 (V¢ wr, w2)

_ - 1 - _ —
= (T F wr, 0wz) = 592(VE @l wr), s (F w2))
1

— 13 0(VE,(F ), 6 (60)) + 150((Vais) (w2, Feor), 3. (66)

— g1(Tan0w1, 6C1) + %m((vé*)(ﬁ, Fuwr), @ (Fuws)).

This is the required proof of theorem.

Theorem 3.3. Let & : (E1,0,&,m,91) — (E2,92) be a PWHSCS from a SM E; onto a RM

Zo such that structure vector field & is horizontal. Then the following are equivalent.

(i) Vertical distribution (ker &) is integrable.

(i) 3202(VG, @ (F Powr), @ul(Fwa)) + 3292(VE @ (F Qur), au(F wa))
= c0s20g1 (V g, Qur, we) —sin2051(0) g1 (Qw1, w2) + g1 ([w1, B1], w2) — g1(Ag, 0PBw1, N B1)
—g1(vVg,8Bwi, TB1)+91(Ag, 8Pwi, dws)—g1(Va, F 6w, we)+91 (Ag, F Quy, dws)
+ 91 (T, 0wi, NB1) + 91 (vV 4, 0w1, TB1) + 91 (T, dwi, TB1) + 91 (RV, Fwi, NB1)
+ 91(B1, Fwz2)g: (FPwy, gradIn X) + g7 (FPw;, Fwz)gs(B1, gradIn \)
—91(B1, FPwy1) g1 (Fwz,gradIn \) + g1 (81, Fwz)g: (F Qwy, grad In \)
+ 91 (FQwi, Fwe)g:(B1,gradIn A) — g1 (81, FQw1)g1 (Fwe, gradIn \),

for any wi,wa € I'(ker &) and By € I'(ker &, )*.

Proof. By using (2.11)), (2.13)), (2.15) and (3.17]), we have
g1([w1, wa], B1) = —g1([wr, B1],w2) — 91(V g, ¢wi, dw2) + g1(Ve, wi, ¢B1),
for any wy,ws € I'(ker &) and B1 € T'(ker &.)*. In the light of (2.4)-(2.7) and (2.15)), we can

write
gi([wr,wa], B1) = — g1(Tandwi, N B1) — g1 (vVu,dws, TB1) — g1 (T, Fwi, T B1)
— g1([wi, B1],w2) + g1(Ag, 0Bwr, N B1) + g1(vV g, 0Bwy, T B1)
— g1(Ag, FPw1, dwa) — g1 (RV g, F Pwi, Fwa) + g91(V g, p6Quwr, wo)
— 91((V5,0)0Qw1, wa) — g1(Ap, F Qu1, dws) — g1(RV 5, F Qur, F w2)
— g1(RVy, Fw1, NBy).
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By using Lemma [3.2] with (2.1]), we get
g1(Jwi,wa], B1) = — g1(Tandwi, NB1) — g1 (vVu,bws, TB1) — 91 (Twydwy, T B1)
+ 5in26031 (0) g1 (Qu1, w2) — cos*0g1 (V 5, Quwr, wa) + 91(V g, F 6w, wo)
— g1([w1, 1], w2) + g1(Apg, 6Pwr, N'B1) + 91(vV 5, 6Bws, T B1)
— 29 RV 5, FBen), 0 2) — 35302(0 (N3, D), 610 (F )
— g1(Ag, FQu1, 6wa) — g1 (Vo F w1, N B1) — g1(Ap, F Pwr, dw2).
O

By using the horizontal conformality of @ from Lemma and with (2.9)), we finally
deduce that

g1(lwr,wal, 1) = — g1([w1, A1), w2) + 91(Ag,0Bwi, N 1) + g1(vV 3, 0PBwy, T B1)
+ sin2631(0) g1 (Qu1, wa) — 0052991(Vﬂ1§3w1, wa) + g1 (Vs F 6Quwr, ws)
— 91(Tey0w1, N B1) — 91(vVu, 0wy, T B1) — 91 (Twydws, T B1)
— 91(B1, Fw2)g1(FPwi, gradIn \) — g1 (F Pwi, F w2)g1(81, grad In A)

— (B, F o)1 (F ez, grad InA) + 5502V, 8 (FFeon), 0 (F )

— g1(B1, Fwa2)g1(F Qui, gradIn X) — g1 (F Qui, F wa)g1 (81, grad In A)

— 91(P1, F Q1)1 (F w2, grad In A) + %gg(vgld*(Fle), e (Fws))

— g1, FPwi, dwa) — g1(Ag, F Qur, dwa) — g1 (RV, F wi, N By).
This completes the proof of theorem.

Theorem 3.4. Let a: (E1,0,£,1,91) — (E2,92) be a PWHSCS where (E1,¢,£,1m,91) is a
SM and (Z2,92) is a RM such that structure vector field £ is horizontal. Then the anti-
invariant distribution D+ defines totally geodesic foliation if and only if

1 ~ _ _ 1 _ _ -
p%(vad*(/ﬁ@), ax(Fwr)) :F92((V54*)(Cla FG2),a(Fwi)) — g1(T¢,6G2, F)

— g1(vV¢,6C2,0w1) — g1 (T¢, F (2, 0wy)

(3.22)

and
%gz(vgﬁ*(/ﬁ@)v a(NB1)) 2%92((“54*)((17 Fé2),a(NBr)) — 91(T¢, 62, N Br)

—q1(vV¢,0C2, TB1) — g1(Te, F oy TB1) + 91(6C1, C2)n(B1),
(3.23)

for any (1, ¢ € T(D1), w1 € T(D?Y) and By € T(ker ).
Proof. By using , and , we get
91(V¢,Go,w1) = 91(V, 0Ca, dwn) + g1(Vey F G, pwr).
In the light of , , and , we can write
91(Ve G, 1) =g1(T, F Go, 0wn) + %gz(a*(w@ﬁ@), ax(Fuwy))
+ 91(T¢,0C2, Fwr) + g1(vV¢, 0C2, dwy).
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By using the horizontal conformality of & with Lemma and ([2.1)), (2.5]), we finally get
91 (Ve G, wi) =g1(T5,0C2, Fwi) + g1(vV¢,0C2, 0wi) + g1 (Te, F (2, 0wy )

— (Va1 F @), @u(Feon)) + 1502(V8, 0 (F ), @ (Feo)).

On the other hand, for any (;,¢ € T'(D4), B; € I'(kera,)* and by using , ,
(2.15)), we have
91(V¢, G2, B1) = 91(Vey ¢C2, 9B1) + 91(6C1, C2)n(B1)-

Finally, in the light of , , and , we get
1 - _ 1 _
91(V¢, G2, Br) =ﬁ92(vgld*(:f§2),d*(/\/ﬂ1)) — ﬁQZ((Vd*)(Cla F2),a(NpB1))
+ 91(721542,/\/51) + gl(UVCJ 5_4.27 jﬁl) + 91 (ITQ F_C,Q, jﬁl)

+91(6¢1, G2)n(Br)-
This is the required proof of theorem. O

Theorem 3.5. Let a: (Z1,¢,&,1,91) — (E2,92) be a PWHSCS from a SM (Z1,¢,&,1,91)
onto a RM (Eg,g2) such that the structure vector field £ is horizontal. Then the slant
distribution defines totally geodesic foliation if and only if

1 - _ _ 1 _ _ _ .
Fg2(vgld*(Fw1), ax(Fwz)) — ﬁm((V@*)(Cl, Fwi),ax(Fwa)) + g1(Te Fwi, dws)
= g1([wi, (1], w2) — sin20¢1 (0) g1 (w1, w2) + cos®0g1 (Ve wi,wa) — g1(Te, F OW, wa)

and

$92((V@*)(52,FWl),@*(FWQ)) - $92(Vg254*(Fw1),5é*(Fw2))

= g1([w1, Ba], w2) — sin205(0) g1 (w1, wa) + cos*0g1 (V g,wr, w2) — g1(Ag, F dwy, wy)
+ 91(Ag, Fwi, dwa) + g1 (B2, Fwa)gi (Fwi, gradIn A) + g1 (Fwi, Fws)g1(B2, grad In A)
— g1(B2, Fw1)g1(F wa,gradIn \),

for any wi,ws € T(DY),¢; € T(DL) and By € T'(ker @)™t

Proof. For any wy,ws € I'(®Y) and ¢ € T(D) with using (2.10) , (2.11)), (2.12) and (2.15)),
we have

91(Vaywa, G1) = g1([w1, (], w2) + 91(Ve, 02w, ws) + g1(Ve, F wi,wa) — g1(Ve, F wi, gws).

In the light of (2.5)), (2.10) and ({2.9) with Lemma we can write

9(Ve, w2, G1) = — g1([wi, C1], wa) + sin20¢1 (0) g1 (w1, w2) — cos?0g1 (Ve,wi, wa) + g1(T¢, F wi, dws)
1 o 1
— 3292((Va)(Cr, Fwr), 6u(Fw2)) + 1502(VE au(Fwi), 6 (F wz))-

On the other hand, for any wy,ws € T'(D?) and By € I'(ker a, ) with using (2.10)), (2.11)),
(2.12) and (2.15)), we get

gl(vwlw27/62) - —91([W1,ﬁ2],w2) - gl(v6252w17w2) +91(VBQFSW17W2) - gl(vﬂgﬁwlv¢w2)'



94 M. SHUAIB

From (2.7) and with lemma we have
91 (Vi wa, B2) = — g1([w1, Bal, w2) + sin20B2(0) g1 (w1, w2) — cos?0g1 (V g,w1, w2)
+ g1 (Ag, Fdwi,wa) — g1(Ap, Fwi, dwa) — g1(RV g, F wi, Fwa).

Finally by using the horizontal conformality of & with (2.1]), (2.9) and Lemma we can
deduce that

91(Vuyw2, B2) = — g1([w1, Ba),w2) + sin2082(0) g1 (w1, w2) — cos?0g1 (V g,w1,ws)

- _ - 1 - _ _
+ gl(AgQFéwl,wQ) — g1(A52FW1, dwa) — FgQ(V%;O_é*(FWl), au(Fw2))
— g1(B2, Fw2)g1(F w1, gradIn X) — g1 (F w1, F w2)g1(B2, gradIn \)

+ g1(B2, Fw1)g1(Fws, grad In \).

This completes the proof of theorem.

Theorem 3.6. Let a: =1 — 23 be a PWHSCS from SM (E1,¢,€,1,91) onto RM (Eg, g2)
with structure vector field & is horizontal. Then (ker &, )" defines totally geodesic foliation if
and only if

1392V, 8 (N Ba), 6. (F )
= 91(B1, F €1)g1(N B2, grad In \) + g1 (N Ba, F C1)g1(B1, grad In \)
— g1(B1, N B2)g1(F C1, gradIn \) — g1(A, T B2, F (1)
—91(vVp, T B2,0C1) — 91 (A, N'B2,0C1) — n(B2)g:(B1, F 1),
for any B, Ba € T(ker &)t and (1 € T'(ker av).
Proof. For any B1, 32 € T'(ker &.)* and ¢; € T'(ker a,) with using (2.10)), (2.11), (2.12)), (2.13),
and , we can write
91(Vg, B2,C1) =91(Ap, T B2, F C1) + g1(vV 5, T B2, 6C1) + g1 (Ag, N B2, (1)
+ 1 (HV g, N B2, FG1) +n(B2)91(B1, F Q1)
By using the horizontal conformality of & with , and Lemma we finally get
91(V, B2,¢1) =91(Ap, T B2, F C1) + 91(vV s, T B2, 0C1) + g1 (A, N B2, 0¢1)
— 91(B1, F C1)g1(N B2, grad In \) — g1 (N Bz, F ¢1)g1(B1, grad In A)

+ 0181 N B)gr (G grad ) — 5502(V5, 0 (NBa), (7 1)

+1(B2)g1(61, F C1),
which is the required proof of the theorem. O

Theorem 3.7. Let & : (E1,0,£,1,91) — (E2,92) be a PWHSCS where, (E1,6,&,m,91) a
SM and (22, 92) a RM with structure vector field & is horizontal. Then the following are

equivalent.

(i) (ker ax) defines a totally geodesic foliation.
(i) 3292(VE, 0 (F QB1), G (F B2))+91([B1, F 1, B2) +91(Aq0 PPy, F B2)+91(Ag, F PPB1, 0f2)
= sin260(2(0)g1(QB1, B2) — cos*0g1(V¢,QB1, B2) — 91(vV¢,6PB1,6(2)
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— 91(HV ¢, F PB1,FB2) — 91 (A¢c, F QB1,082) —n(B1)g91(Ce, FB2) +1(B2) g1 (6¢2, B1)
+gj(Cg,Fﬁg)m(FQﬁ],gradln)\)+91(FQB],Fﬁg)QJ(CQ,gradln)\)
_91(427FQBI)QI(F627grad1n/\)7

for any B, Ba € T'(ker @) and (o € T'(ker a)*.

Proof. Considering the fact

91(Vg, B2,C2) = —1([B1, G2, B2) — 91 (Ve @B, #B2) — 1(B1)g1(Cas F B2) + n(B2)g1(6¢2, Br),
by using (2.11)), (2.15), ([2.10) and for any f1, B2 € I'(ker &) and (o € I'(ker @,)t. In
the light of , and , we can write
91(V,B2,() = — 91([B1, G2], B2) — g1(V e, 0 PB1, ¢B2) — g1 (Ve F PP, B2)
— 91(Veo FQB1, ¢B2) — n(B1)g1(Ca, F B2) +n(B2)91(0¢2, B1)
— 91(V,0QB1, ¢fa).
From (2.10), (2.7), ([2-15) and (2.13)), we have
91(V3,82,¢2) = — 91([B1, G2, B2) — 91(A,0 PP, F B2) — g1 (vV ¢, 6 P By, F B2)
— q1(HV ¢, F PRy, F B2) + 91(V,6°QPB1, B2) — g1(Ac, F QB1,62)
— 1MV o F QB T B2) — 1(B1)g1(C2, F B2) +n(B2)g1(3¢2, A1)
— g1(Ae, T PBy,6fa).
By using , and from the fact that & is a PWHSCS, we finally get
91(Vg, B2, W) = — g1([B1, G2}, B2) — 91(A,0PB1, T B2) — g1(vV ¢, 6 PB1, F B2)
— gL(HN o F PB1, T B2) + sin2002(0)g1(QB1, B2) — cos’091(V, QB Ba)
(AT QB 352) — 302 (VE0(F Q). aulT 2))
+ 91(C2, F B2)g1(F QP1, gradIn A) + g1(F QB , F B2)g1(C2, gradIn A)
— 91(C2, F QB1)g1 (F B2, gradn A) — n(B1)g1(Ca, F B2) + 1(B2)91(5¢2, X)
— 91(Ae,F PB1,6f).
This is complete proof of the theorem. O

Theorem 3.8. Let & : (ZE1,0,&,m,91) — (E1,92) be a PWHSCS from a SM E1 onto a RM

Zo such that the structure vector field £ is horizontal. Then & is totally geodesic map if and

only if

(i) 3292(VE,ax(Fwr),ax(F G)) = sin2052(0)g1 (w1, C1) — cos*0g1(V gy, C1)
— g1(Ag, F w1, C1) — g1(Ag, Fw1,661) + 91(B2, F ¢1)g1(Fwr, grad In \)
+ g1(F w1, F ¢1)g1(B2, gradIn X) — g1 (B2, F wi)g1(F 1, gradIn X) — g1([B2,w1], C1)
(il) Te, JTFwi + Ve NF wy € T'(ker o)
(ii)) 3792(V§,@x(Fowr), ax(B2)) = cos*0g1(Vg,wi, B2) — g1 (g, Fwi, T B2)
+ 3292((Vaw) (B1, F dwr), @ (B2)) + 3292((Va) (B1, F wi), (N Ba))
— 1292(V5§ au(Fw1), au(NB2)) — g1(T B1, wi)n(Ba),

for any wi, ¢ € T(DY), (2, ws € T(DL) and By, B2 € T'(ker ax)*.
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Proof. By using , , and , we can write
1
12 92((Va) (Wi, ¢1), 6:(82)) = —9([B2,01], 1) = 91(Vg, 61, 61),

for any wy, ¢ € I'(DY) and B € I'(ker & )*. In the light of (3.18)), (2.13)) and Lemma we
get

%gz((vm)(wl, (1), @x(B2)) = — g([B2, w1, C1) + sin20B2(0) g1 (wi, C1) — cos*g1 (V gywi, C1)
— g1(Ap, Fw1,6¢1) — g1 (HV g, F wi, F Q).

From (22.9) and by using the horizontal conformality from Lemma we have

1

3202((Va) (w1, G1), 8 (82)

= —g([B2,w1], C1) + sin2055(0) g1 (w1, C1) — cos”0g1(V g1, 1)
— g1(Ag, Fwi, 0¢1) — %gz(vg;o_z*(,fwl), ax(F(1))

+ g1(B2, FC1)g1(Fwi, gradIn ) 4+ g1 (Fwi, F (1)g1(B2, gradIn A)
— 91(B2, Fw1)g1(F ¢1,gradIn \),

which is the proof of (7). On the other hand, from (2.1)), (2.9)), (2.13) and (2.15)), we get

%m((va*)(whﬁl)ad*(@)) = —g1(V¢,0w2, dB1),

for (o,ws € T(D1) and By € I'(ker ay)*. By using the fact ¢ws € T'(ker ay)*,we € T(D)

and from (2.4)), (2.5)), we have

392V (w1,G1), 3 (82)) = 91 (AT Fwn, B1) + g1 (HVGN T, By),

which proves the (ii) part. For part (iii), by using (2.1)), (2.9), (2.11)) and (2.13]), we can

write

%gz((Vd*)(ﬁbm), ax(B2)) = —g1(Vg,0w1, $B2) — g1(T Br,w1)n(B2),

for any w; € T'(D%) and 1,82 € I'(@.)’. In the light of (3.18), [@.11), (2.13), and
Lemma [3:2] we get

1 _ _
pg2((va*)(w1, (1), @(B2)) = — cos*0g1(Vg,wi, B2) — g1 (HV 5, F dwi, B2) — g1(Ag, F wi, T B2)
-0 (HVgl Fwi,NB2) — g1(TBr,w1)n(B2).
By using the horizontal conformality of & with (2.9) and Lemma we finally have

%92((V&*)(w1, (1), @(B2))
= —cos’0g1(Vg, w1, B2) — g1(As, Fwr, T B2) — 91(T B, wi)n(B2)
+ %gz((vm)(ﬂl, Fowy), 6(B2)) — %gz(vgla*(ﬁgwl)’ ()

+ 5502((90,) (B, Fen), @ (N Ba) — 3592V, 0 (Fio1), 8, (N 2).

This completes the proof of theorem. O
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Theorem 3.9. Let a : (E1,6,&,1,91) — (E2,92) be a PWHSCS where, (Z1,¢,&,1m,91) a
SM and (Za,92) a RM with structure vector field & is horizontal. Suppose & is D?-¢-

pluriharmonic. Then the following are equivalent.

(i) ©Y defines a totally geodesic foliation.

(ii) V& au(C) + Vi, au(FG) = VE au(F () = cos?0a (N HV 5, G2 + F T, Go
£ F 0V, Co) - Sin20(5C (O)Tu(F Ca) + F 1 (0)au(F C2)) — (V¢ 0C)aut
— @ (HV 5, Co 4+ FAre, F0Co + NHV pe, F6Co) — F ¢ (InA)au(F (o)
—FC(InX)a(FCr) + 91 (F ¢, F2)as(gradln A) — O?*(HgCZFCQ) +NAFr¢,Co,

for any (1, ¢ € T(DY).
Proof. By using the concept of ¢-pluriharmonicity with and , we have
Ve G = VE a(G2) + V?gla*(éf?Cz) — @, V5,002 — V5, F G — Vi 06 — Ve, F G,
for any (1, € T'(DY). In the light of , and (2.12)), we can write
Ve G2
= VE&(G2) + Vi, 3(0C2) + (65, 656 + 1(V5,562)6)
+ (V9082 + (Vi 06)E) — @V, F G — anVse F G
By using , and Lemma we get
Ve G
= V& @ (C2) + Ve, 0 (¢C2) + sin206¢1 (0)a (¢(2) — cos® 0 (¢ V5, C2)
+ sin20F (1(0) @ (¢C2) — cos*0as (¢V¢, C2) + { @(Tse, G2+ HV 5, C2) }
+ (Vs 062)a:€ + @ 0(Ap ¢, F 0G + HV ¢, F0G)} +1(Vi¢,062)as€
— V%Cl&*(ﬁﬁ) + (Vau)(F (i, FG2) — 07*(77;41:5{2 + Hse F C2)-

Finally, by using the horizontal conformality of & from Lemma and with (2.7)), (2.1]), we
have

.V, G2 =V, i (¢C2) + 8in200¢1 (0) @ (F (o) — cos*0a. (N HV 5, G2 + F Tz, C2)
+ sin20F (1(0)a (F G2) — cos® 0 (N Ap¢, G + FuVie, C2) + au(HV 5., C2)
+ (Vs 062) & 4+ u{ F (Ap e, F 6o + NHV p e, F0C2)} 4+ n(Vi, 6C2) @
+ FG(InN)a.(FG) + F G(InN)ax(F¢) —g1(F G, F G2)as(gradln A)
— au(Hse, FG2) + VE @u(G2) — Vi, ax(F G).

This completes the proof of the theorem.

4. POINTWISE HEMI-SLANT CONFORMAL SUBMERSIONS WITH VERTICAL REEB VECTOR
FIELD-{

This section will go over the definitions and results that will help us understand and
investigate the concept of pointwise hemi-slant conformal submersions from ACMMs by

considering the Reeb vector filed & vertical.
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Definition 4.1. Let & : (E1,6,&,m,91) — (E2,92) be a HCS where (Z1,¢,£,1,91) is an
ACMM and (Eg,g2) is a RM. A HCS & is called a pointwise hemi-slant conformal sub-
mersion if there exists distributions ®+ and D9 such that kera, = D°0D+® < & >, $(D+) C
[(kera)t and for any given point ¢ € =y and By € (D?),, the angle 0 = 6(B1) between ¢
and space (DY), is independent of choice of non-zero vector B € (D%),, where D is the
orthogonal complement of ®+ in keran, and < £ > is 1-dimensional distribution. The angle

0 is a slant function, often known as the pointwise hemi-slant function of submersion.

Let & be a PWHSCS from an ACMM (E1,¢,&,1,91) onto a RM (Za, g2) with vertical
Reeb vector field £. Then, for any Y € (kera,), we have

Y =BB2 + 2B +n(B2)§ (4.24)

where 9 and Q are the projections morphism onto ©+ and D?.

Lemma 4.1. Let & be a PWHSCS from an ACMM (Z1,¢,&,m,91) onto a RM (22, g2),
then we have

02wy = — cos?0(1 — N @ &)ws, (4.25)
for any vector field wy € T'(keras,).

Lemma 4.2. Let & be a PWHSCS with vertical &, from an ACMM (21, 0,£,1,91) onto a
RM (Ea2,g2), then we have

(i) 91(8¢1,0C2) = cos® {g1(C1, G2) — n(C)n(C2)},
(i) g1(F 1, F G2) = sin® 0{g1(C1, G2) — n(C)n(G)},
for any vector fields (1,2 € I'(keray).

Moving further, we shall talk about the integrability of slant and anti-invariant distribu-
tions ©? and D respectively.

Theorem 4.1. Let & be a PWHSCS from SM onto o« RM with vertical € and 0 is a
hemi-slant function, tfae
(i) The anti-invariant distribution D is integrable.
(ii) /\%gg(vgéz*(FQ) — VZOA(F@), ax(Fwr))
=9(Ve, P0G + Ve, F oG, wi) — g(Te, F G+ TeoF Cry 0wn),
for any ¢1,¢ € T(DY) and wy € Y.
By comparing the preceding conclusion with Theorem it is inescapable that there is

no influence of the Reeb vector field &, whether horizontal or vertical. For slant distribution,

we have

Lemma 4.3. Let @ : (E1,0,£,1,91) — (Z2,92) be a PWHSCS with £ € T'(keras) where,
(E1,0,€,1,91) a SM and (Eg,g2) a RM. Then the slant distribution is not integrable.

Since the slant distribution is not integrable, now we will discuss about distribution %@ <

§>.
Theorem 4.2. Let & : =1 — =9 be a PWHSCS from a SM Z1 onto a RM Zo such that €

is vertical. Then the following are equivalent.
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(i) Slant distribution D@ < € > is integrable.
(i) 3292(VE ax(Fwi), @ (Fwa)) + 3292(VE, @ (Fwi), @(6¢1)) + g1 ([wr, Gil, wa)
= sin20g; (w1, wa) — co8?0g1 (Ve wi,wa) — g1(Te, Fwi, 0ws) — g1 (T F wi, ¢1),
for any wi,ws € T(DYD < € >) and ¢ € (D).

Proof. For any wi,ws € I'(®@ < ¢ >) and ¢; € I'(D)* with taking account the fact from
@11), 2.13), @.15), (24), 2-5), (2.1) with Lemma [3.2] we get

g1([w1,w2], 1)

= —g1([w1, 1], w2) + 5201 (0) g1 (w1, wa) — cos*0g1 (Ve,wi,w2) — g1 (Tandwi, 1)

- 1 _ _ 1 _
- 91(7-(1Fw175w2) - ﬁgQ(@*(NvClF“}l)a @*(Fw2)) - FQQ(@*(vaﬂrwl)a d*(¢€1))
By using the horizontal conformality of & with Lemma and (2.5)), we finally have

g1([w1,wa), C1)
= —g1([w1, C1],w2) + sin?0¢1 () g1 (w1, w2) — cos?0g1 (Ve wi,w2) — g1(Tandwr, ¢C1)

_ - 1 - _ _ 1 _ _
= 91T P, wa) = 5592(VE u(Fwi), au(Fwa)) + 1592((Vau) (G, Fon), ax(Fwz))
1 1

- §92(V5254*(le)a ax(pC1)) + ﬁgz((Vd*)(W% Fwi), s (eC1)).

O

Although the nature of ¢ differs, the proofs of Theorem and the previous result are
identical as well.

Corollary 4.1. Let a: (E1,0,£,1,91) — (E2,92) be a PWHSCS from SM (Z1,¢,£,1,91)
onto a RM (23, g2) with hemi-slant function . The following conditions holds.

Let (i) DY@ < € > is integrable with | (i1) D is integrable with
a:(Z21,0,6,m,q1) | €€ F(k:_erd*)iif and orfly if e F(k:grd*)} if and only if
— (22, 92) 3292(VE au(Fuwi), an(Fuwz)) 3292(VE au(Fwi), au(Fuwz))
be a PWHSCS | 45502(VS, 0 (Fwi), u(¢C1)) +3292(VE, @ (Fwr), du(¢¢1))
from SM onto. a | +g1([w1, (1], w2) = sin26 +g1([w1, (1], w2) = sin26
RM with f%emz g1(wi,wa) — g1(T¢, F wi, 0wa) g1(w1,w2) — g1 (Ta F w1, 9C1)
slant function 6. -cos20g; (Ve wr, ws) -0052991(V<1_(,01,w2)

Then -01 (T F w1, 0C1) -q1(T¢, F w1, 0w2)

Then, for (i), wi,ws € T(®’@ < ¢ >) and ¢ € T(DL), for (ii), wi,ws € T(DY) and
(L eT(®@h).

For totally geodesicness of anti-invariant distribution ®+ considering ¢ to be vertical spe-
cially ®+@ < € >, we have

Theorem 4.3. Let & be a PWHSCS from SM (21,¢,£,m,91) onto a RM (Ea,g2) with
hemi-slant function 0 and vertical Reeb vector field &. Then the anti-invariant distribution

DL® < € > defines a totally geodesic foliation if and only if

%92(V?107*(FC2)7 Q(Fwi)) =$92((V@*)(Ch F ), au(Fwr)) — g1(7¢,6C2, F)
— g1(vV¢, 8¢, 0w1) — g1 (T¢, F 2, 0wy)
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and

%m(vgd*(ff@)v a(NB1)) :%92((V@*)(C17 Fé2),a(NBr)) — 91(T¢, 62, N Br)

— 91(vV¢,6¢2,TB1) — 91(Te, F o, TB1) + 91(Ci BB1)n(Ca),
for any C1,Go € T(D4& < € >),w; € T(D?) and By € T(ker a,)*.
Proof. From , , , and , we obtain
91V, Cor01) =0 (Te T G ) + 5302(34 RV T a), 6 (Fn)
+91(T6, 02, Fwr) + g1(vV¢, 6C2, 0wy).
Lemma , and the horizontal conformality of & allow us to ultimately obtain
91(Ve, G, w1) =g1(T¢, 06, Fwn) + g1(vVe, 8¢, 0wi) + g1 (T¢, F G2, 0ws)

~ 50(Va)(G1, F @), au(Fion)) + 3502(VE Au(F ), (Fi).

However, using , , , , , and , for any (1, ¢ € T'(D+) and

By € T'(ker &,)*, we have

91(V¢ G2, Br) 2%92(V?1d*(FC2),d*(N51)) — %92((V@*)(C1, F2),a(NpB))
+ 1(T6, 062, NB1) + 91(vV ¢, 62, TB1) + 91 (Te, F C2, T B1)

+ g1(¢1, BBN(C2).
This is the required proof of theorem. O

Theorem 4.4. Let & be a PWHSCS from SM (Z1,¢,£,m,91) onto a RM (Ea,g2) with
hemi-slant function 6 and vertical Reeb vector field &. Then the slant distribution D+ not

defines totally geodesic foliation.

Since the slant distribution is not defines totally geodesic foliation, we can discuss the total

geodesicness of D@ < ¢ > as follows :

Corollary 4.2. Let & be a PWHSCS from SM (E1,6,€,m,91) onto a RM (Eg, g2) with
hemi-slant function @ and vertical Reeb vector field €. Then the slant distribution ®+@& < € >
defines a totally geodesic foliation if and only if

1302(VE A (F ), (F ) =3502((Van) (G, F o), a(Fen) = 01T, 06a, F)

B B B (4.26)
—91(vV¢,6C2,0wr) — g1 (T¢, F €2, 0wy)
and
F(VEE(F G), 4. (N By))
= 392(V0)(G, TG, 0N B) — 01 (T, 560, N By) (4.27)

— 91(vV¢,6Ce, TB1) — 91(T¢, FC2, TB1) — 91 (6F Ci, Br)n(Ce),
for any C1,G € T(D1),w; € T'(DY) and By € T(ker &)™t

Theorem provides an easy way to prove the above conclusion by taking the vertical

character of &-. When we compare the proof of both results, there is no change in equations
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(3.22) and (4.26)), but in comparison (3.23) and (4.27)), single term g1 (61, (2)n(B1) is substi-

tuted by —g1(6F C1, B1)n((2).

5. CONCLUSION

This research article examined the effect of a vector field ¢- with dual nature (vertical and

horizontal) on pointwise hemi-slant conformal submersions from Sasakian manifolds. The

conditions of distribution integrabiities and their leaves’ total geodesicness are also examined.
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